Machine Learning in the Diagnosis and Prognostic Prediction of Dental Caries: A Systematic Review

接收机工作特性 医学 梅德林 机器学习 列联表 荟萃分析 系统回顾 斯科普斯 协议(科学) 人工智能 医学物理学 内科学 计算机科学 病理 替代医学 法学 政治学
作者
Lilian Toledo Reyes,Jéssica Klöckner Knorst,Fernanda Ruffo Ortiz,Thiago Machado Ardenghi
出处
期刊:Caries Research [Karger Publishers]
卷期号:56 (3): 161-170 被引量:11
标识
DOI:10.1159/000524167
摘要

We performed a systematic review to evaluate the success of machine learning algorithms in the diagnosis and prognostic prediction of dental caries. The review protocol was a priori registered in the PROSPERO, CRD42020183447. The search involved electronic bibliographic databases: PubMed/Medline, Scopus, EMBASE, Web of Science, and grey literature until December 2020. We excluded review articles, case series, case reports, editorials, letters, comments, educational methodologies, assessments of robotic devices, and articles with less than 10 participants or specimens. Two independent reviewers selected the studies and performed the assessment of the methodological quality based on standardized scales. We summarize data on the machine learning algorithms used; software; performance outcomes such as accuracy/precision, sensitivity/recall, specificity, area under the receiver operating characteristic curve (AUC), and positive/negative predictive values related to dental caries. Meta-analyses were not performed due to methodological differences. Our review included 15 studies (10 diagnostic studies and 5 prognostic prediction studies). Cross-sectional design studies were predominant (12). The most frequently used statistical measure of performance reported in diagnostic studies was AUC value, which ranged from 0.745 to 0.987. For most diagnostic studies, data from contingency tables were not available. Reported sensitivities were higher in low risk of bias prognostic prediction studies (median [IQR] of 0.996 [0.971-1.000] vs. unclear/high risk of bias studies 0.189 [0-0.340]; p value 0.025). While there were no significant differences in the specificity between these subgroups, we concluded that the use of these technologies for the diagnosis and prognostic prediction of dental caries, although promising, is at an early stage. The general applicability of the evidence was limited given that most models were developed outside the real clinical setting with a prevalence of unclear/high risk of bias. Researchers must increase the overall quality of their research protocols by providing a comprehensive report on the methods implemented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芹菜完成签到,获得积分10
1秒前
1秒前
丘比特应助九月小科研采纳,获得10
3秒前
Jamesliu发布了新的文献求助10
4秒前
毛毛完成签到,获得积分20
4秒前
小水母发布了新的文献求助10
4秒前
4秒前
迅速海云完成签到,获得积分10
4秒前
托丽莲睡拿完成签到,获得积分10
5秒前
6秒前
11关闭了11文献求助
6秒前
Lily完成签到,获得积分10
8秒前
闪闪的妙竹完成签到 ,获得积分10
9秒前
雨声完成签到,获得积分10
11秒前
杨阳洋发布了新的文献求助10
11秒前
haapy完成签到,获得积分10
11秒前
13秒前
英姑应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
ermu应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
tramp应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
14秒前
16秒前
tao完成签到 ,获得积分10
16秒前
17秒前
17秒前
Andy_Cheung应助gyd采纳,获得10
17秒前
Lucas应助几人得真鹿采纳,获得10
18秒前
18秒前
凉饮完成签到,获得积分10
19秒前
21秒前
21秒前
今后应助xiuxiu_27采纳,获得10
22秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707881
求助须知:如何正确求助?哪些是违规求助? 3256404
关于积分的说明 9900173
捐赠科研通 2969011
什么是DOI,文献DOI怎么找? 1628253
邀请新用户注册赠送积分活动 772038
科研通“疑难数据库(出版商)”最低求助积分说明 743611