亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning in the Diagnosis and Prognostic Prediction of Dental Caries: A Systematic Review

接收机工作特性 医学 梅德林 机器学习 列联表 荟萃分析 系统回顾 斯科普斯 协议(科学) 人工智能 医学物理学 内科学 计算机科学 病理 替代医学 政治学 法学
作者
Lilian Toledo Reyes,Jéssica Klöckner Knorst,Fernanda Ruffo Ortiz,Thiago Machado Ardenghi
出处
期刊:Caries Research [S. Karger AG]
卷期号:56 (3): 161-170 被引量:24
标识
DOI:10.1159/000524167
摘要

We performed a systematic review to evaluate the success of machine learning algorithms in the diagnosis and prognostic prediction of dental caries. The review protocol was a priori registered in the PROSPERO, CRD42020183447. The search involved electronic bibliographic databases: PubMed/Medline, Scopus, EMBASE, Web of Science, and grey literature until December 2020. We excluded review articles, case series, case reports, editorials, letters, comments, educational methodologies, assessments of robotic devices, and articles with less than 10 participants or specimens. Two independent reviewers selected the studies and performed the assessment of the methodological quality based on standardized scales. We summarize data on the machine learning algorithms used; software; performance outcomes such as accuracy/precision, sensitivity/recall, specificity, area under the receiver operating characteristic curve (AUC), and positive/negative predictive values related to dental caries. Meta-analyses were not performed due to methodological differences. Our review included 15 studies (10 diagnostic studies and 5 prognostic prediction studies). Cross-sectional design studies were predominant (12). The most frequently used statistical measure of performance reported in diagnostic studies was AUC value, which ranged from 0.745 to 0.987. For most diagnostic studies, data from contingency tables were not available. Reported sensitivities were higher in low risk of bias prognostic prediction studies (median [IQR] of 0.996 [0.971–1.000] vs. unclear/high risk of bias studies 0.189 [0–0.340]; <i>p</i> value 0.025). While there were no significant differences in the specificity between these subgroups, we concluded that the use of these technologies for the diagnosis and prognostic prediction of dental caries, although promising, is at an early stage. The general applicability of the evidence was limited given that most models were developed outside the real clinical setting with a prevalence of unclear/high risk of bias. Researchers must increase the overall quality of their research protocols by providing a comprehensive report on the methods implemented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
zz关注了科研通微信公众号
22秒前
唐政发布了新的文献求助10
25秒前
枫泾完成签到,获得积分10
33秒前
leaaaon关注了科研通微信公众号
48秒前
1分钟前
leaaaon发布了新的文献求助10
1分钟前
RYYYYYYY233完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
唐政发布了新的文献求助10
1分钟前
Hvginn完成签到,获得积分10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
宇文宛菡完成签到 ,获得积分10
3分钟前
Q42完成签到,获得积分10
3分钟前
3分钟前
深情安青应助老实的珊珊采纳,获得10
3分钟前
Alisha完成签到,获得积分10
4分钟前
4分钟前
老实的珊珊完成签到,获得积分20
4分钟前
4分钟前
4分钟前
poe完成签到,获得积分10
5分钟前
5分钟前
阿甲发布了新的文献求助10
5分钟前
Hello应助poe采纳,获得10
5分钟前
5分钟前
希望天下0贩的0应助阿甲采纳,获得10
5分钟前
伊可创发布了新的文献求助10
5分钟前
香蕉觅云应助酷炫梦蕊采纳,获得30
5分钟前
5分钟前
酷炫梦蕊完成签到,获得积分10
5分钟前
酷炫梦蕊发布了新的文献求助30
5分钟前
6分钟前
6分钟前
6分钟前
完美路人发布了新的文献求助10
6分钟前
科研通AI6.1应助完美路人采纳,获得10
6分钟前
科研通AI6.1应助笙南采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 520
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5829029
求助须知:如何正确求助?哪些是违规求助? 6040035
关于积分的说明 15576015
捐赠科研通 4948633
什么是DOI,文献DOI怎么找? 2666370
邀请新用户注册赠送积分活动 1611980
关于科研通互助平台的介绍 1567022