亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of meat species by combined laser-induced breakdown and Raman spectroscopies

拉曼光谱 激光诱导击穿光谱 均方误差 混乱 模式识别(心理学) 人工智能 分析化学(期刊) 混淆矩阵 均方根 生物系统 材料科学 随机森林 一致性(知识库) 数学 激光器 计算机科学 化学 统计 光学 色谱法 物理 生物 心理学 量子力学 精神分析
作者
Haoran Sun,Chao Song,Xiaomei Lin,Xun Gao
出处
期刊:Spectrochimica Acta Part B: Atomic Spectroscopy [Elsevier]
卷期号:194: 106456-106456 被引量:25
标识
DOI:10.1016/j.sab.2022.106456
摘要

We study the effect of complementary spectral information based on combined LIBS (laser-induced breakdown spectroscopy) and Raman spectroscopy, including 3 options of LIBS, Raman and LIBS-Raman, on the improved classification accuracy of meat tissues of beef, mutton and pork. The BPNN (back propagation neural network) with input variables optimized by RF (random forest) was used to classify the 3 kinds of meat tissues. The model confusion matrix, Precision, Recall, Kappa, MAE (Mean absolute error), RMSE (Root mean square error) and other parameters were obtained by 10-fold cross-validation method to evaluate the 3 classification models, and the results of the three methods were compared. The results showed that the combined LIBS-Raman model has the highest classification accuracy of up to 99.42%, and superior to the other 2 separate methods in terms of model consistency and confidence degree, indicating that the combined LIBS-Raman method has significantly improved the recognition ability and classification accuracy of meat tissues, which took the advantage of utilizing the complementary spectral information obtained by both methods. Therefore, the combination of LIBS-Raman and BPNN is a fast and robust method for meat tissue identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
清修完成签到,获得积分10
9秒前
zoes完成签到 ,获得积分10
28秒前
maprang完成签到,获得积分10
36秒前
maprang发布了新的文献求助20
42秒前
浮游应助科研通管家采纳,获得10
50秒前
50秒前
浮游应助科研通管家采纳,获得10
50秒前
59秒前
1分钟前
apriltsy发布了新的文献求助10
1分钟前
糯糯汤圆完成签到,获得积分20
1分钟前
1分钟前
2分钟前
2分钟前
狂野的白秋关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
池雨发布了新的文献求助10
2分钟前
yuan完成签到 ,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
萝卜完成签到,获得积分10
2分钟前
萝卜发布了新的文献求助10
2分钟前
3分钟前
宇称yu完成签到 ,获得积分10
3分钟前
摇叶发布了新的文献求助30
3分钟前
maher完成签到,获得积分10
3分钟前
hhq完成签到 ,获得积分10
3分钟前
YujieJin发布了新的文献求助10
3分钟前
冷傲迎梅完成签到 ,获得积分10
3分钟前
3分钟前
糯糯汤圆发布了新的文献求助10
3分钟前
YujieJin完成签到,获得积分10
3分钟前
4分钟前
FashionBoy应助坦率访梦采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498336
求助须知:如何正确求助?哪些是违规求助? 4595591
关于积分的说明 14449481
捐赠科研通 4528384
什么是DOI,文献DOI怎么找? 2481460
邀请新用户注册赠送积分活动 1465593
关于科研通互助平台的介绍 1438350