Deep learning based time-to-event analysis with PET, CT and joint PET/CT for head and neck cancer prognosis

医学 正电子发射断层摄影术 核医学 一致性 头颈部癌 PET-CT 放射科 阶段(地层学) 分割 放射治疗 人工智能 计算机科学 内科学 古生物学 生物
作者
Yiling Wang,Elia Lombardo,Michele Avanzo,Sebastian Zschaek,Julian Weingärtner,Adrien Holzgreve,Nathalie L. Albert,Sebastian Marschner,Giuseppe Fanetti,Giovanni Franchin,Joseph Stancanello,Franziska Walter,Stefanie Corradini,Maximilian Niyazi,Jinyi Lang,Claus Belka,Marco Riboldi,Christopher Kurz,Guillaume Landry
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:222: 106948-106948 被引量:23
标识
DOI:10.1016/j.cmpb.2022.106948
摘要

Recent studies have shown that deep learning based on pre-treatment positron emission tomography (PET) or computed tomography (CT) is promising for distant metastasis (DM) and overall survival (OS) prognosis in head and neck cancer (HNC). However, lesion segmentation is typically required, resulting in a predictive power susceptible to variations in primary and lymph node gross tumor volume (GTV) segmentation. This study aimed at achieving prognosis without GTV segmentation, and extending single modality prognosis to joint PET/CT to allow investigating the predictive performance of combined- compared to single-modality inputs.We employed a 3D-Resnet combined with a time-to-event outcome model to incorporate censoring information. We focused on the prognosis of DM and OS for HNC patients. For each clinical endpoint, five models with PET and/or CT images as input were compared: PET-GTV, PET-only, CT-GTV, CT-only, and PET/CT-GTV models, where -GTV indicates that the corresponding images were masked using the GTV contour. Publicly available delineated CT and PET scans from 4 different Canadian hospitals (293) and the MAASTRO clinic (74) were used for training by 3-fold cross-validation (CV). For independent testing, we used 110 patients from a collaborating institution. The predictive performance was evaluated via Harrell's Concordance Index (HCI) and Kaplan-Meier curves.In a 5-year time-to-event analysis, all models could produce CV HCIs with median values around 0.8 for DM and 0.7 for OS. The best performance was obtained with the PET-only model, achieving a median testing HCI of 0.82 for DM and 0.69 for OS. Compared with the PET/CT-GTV model, the PET-only still had advantages of up to 0.07 in terms of testing HCI. The Kaplan-Meier curves and corresponding log-rank test results also demonstrated significant stratification capability of our models for the testing cohort.Deep learning-based DM and OS time-to-event models showed predictive capability and could provide indications for personalized RT. The best predictive performance achieved by the PET-only model suggested GTV segmentation might be less relevant for PET-based prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饶啟豪完成签到,获得积分10
刚刚
科研通AI2S应助番茄吐司采纳,获得10
1秒前
勤劳晓亦应助jin采纳,获得10
1秒前
武雨寒发布了新的文献求助10
1秒前
jasmine完成签到,获得积分10
2秒前
sensen发布了新的文献求助10
2秒前
2秒前
3秒前
破伤疯应助云宇采纳,获得10
3秒前
Lynn应助勤恳的毛衣采纳,获得10
3秒前
3秒前
Owen应助freedom313514采纳,获得10
3秒前
火星上雨珍完成签到,获得积分10
3秒前
潘潘完成签到 ,获得积分10
4秒前
4秒前
橙子发布了新的文献求助10
4秒前
赘婿应助林飞双采纳,获得20
5秒前
慕青应助lawrencewong采纳,获得10
5秒前
6秒前
___发布了新的文献求助10
6秒前
小马发布了新的文献求助10
6秒前
扶正与祛邪完成签到,获得积分10
7秒前
7秒前
今后应助幽默孤容采纳,获得30
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得20
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得20
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
SciGPT应助hunajx采纳,获得10
9秒前
研友_nv2r4n发布了新的文献求助10
10秒前
wassermelonen发布了新的文献求助10
11秒前
liyaqing完成签到,获得积分20
11秒前
11秒前
13秒前
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170673
求助须知:如何正确求助?哪些是违规求助? 2821714
关于积分的说明 7936172
捐赠科研通 2482144
什么是DOI,文献DOI怎么找? 1322341
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608