亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning based time-to-event analysis with PET, CT and joint PET/CT for head and neck cancer prognosis

医学 正电子发射断层摄影术 核医学 一致性 头颈部癌 PET-CT 放射科 阶段(地层学) 分割 放射治疗 人工智能 计算机科学 内科学 古生物学 生物
作者
Yiling Wang,Elia Lombardo,Michele Avanzo,Sebastian Zschaek,Julian Weingärtner,Adrien Holzgreve,Nathalie L. Albert,Sebastian Marschner,Giuseppe Fanetti,Giovanni Franchin,Joseph Stancanello,Franziska Walter,Stefanie Corradini,Maximilian Niyazi,Jinyi Lang,Claus Belka,Marco Riboldi,Christopher Kurz,Guillaume Landry
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:222: 106948-106948 被引量:23
标识
DOI:10.1016/j.cmpb.2022.106948
摘要

Recent studies have shown that deep learning based on pre-treatment positron emission tomography (PET) or computed tomography (CT) is promising for distant metastasis (DM) and overall survival (OS) prognosis in head and neck cancer (HNC). However, lesion segmentation is typically required, resulting in a predictive power susceptible to variations in primary and lymph node gross tumor volume (GTV) segmentation. This study aimed at achieving prognosis without GTV segmentation, and extending single modality prognosis to joint PET/CT to allow investigating the predictive performance of combined- compared to single-modality inputs.We employed a 3D-Resnet combined with a time-to-event outcome model to incorporate censoring information. We focused on the prognosis of DM and OS for HNC patients. For each clinical endpoint, five models with PET and/or CT images as input were compared: PET-GTV, PET-only, CT-GTV, CT-only, and PET/CT-GTV models, where -GTV indicates that the corresponding images were masked using the GTV contour. Publicly available delineated CT and PET scans from 4 different Canadian hospitals (293) and the MAASTRO clinic (74) were used for training by 3-fold cross-validation (CV). For independent testing, we used 110 patients from a collaborating institution. The predictive performance was evaluated via Harrell's Concordance Index (HCI) and Kaplan-Meier curves.In a 5-year time-to-event analysis, all models could produce CV HCIs with median values around 0.8 for DM and 0.7 for OS. The best performance was obtained with the PET-only model, achieving a median testing HCI of 0.82 for DM and 0.69 for OS. Compared with the PET/CT-GTV model, the PET-only still had advantages of up to 0.07 in terms of testing HCI. The Kaplan-Meier curves and corresponding log-rank test results also demonstrated significant stratification capability of our models for the testing cohort.Deep learning-based DM and OS time-to-event models showed predictive capability and could provide indications for personalized RT. The best predictive performance achieved by the PET-only model suggested GTV segmentation might be less relevant for PET-based prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LY完成签到,获得积分10
5秒前
5秒前
7秒前
cjh发布了新的文献求助10
7秒前
7秒前
nice应助sss采纳,获得10
8秒前
暴躁读研人本伟完成签到,获得积分10
10秒前
lightxyz发布了新的文献求助10
10秒前
ding应助绳索上行走采纳,获得50
11秒前
上官完成签到 ,获得积分10
12秒前
SiboN发布了新的文献求助10
13秒前
16秒前
老张完成签到 ,获得积分10
22秒前
暴躁读研人本伟关注了科研通微信公众号
27秒前
小蘑菇应助z610938841采纳,获得10
28秒前
30秒前
33秒前
35秒前
yue关注了科研通微信公众号
36秒前
Niny完成签到,获得积分10
38秒前
Isaac完成签到 ,获得积分10
40秒前
z610938841发布了新的文献求助10
40秒前
皮皮团完成签到 ,获得积分10
41秒前
43秒前
hha发布了新的文献求助10
49秒前
51秒前
wvv关注了科研通微信公众号
51秒前
51秒前
Wang_JN完成签到 ,获得积分10
52秒前
_元发布了新的文献求助10
55秒前
轩辕山槐完成签到,获得积分10
56秒前
57秒前
hwen1998完成签到 ,获得积分10
58秒前
Nick完成签到 ,获得积分0
59秒前
yue发布了新的文献求助10
1分钟前
1分钟前
_元完成签到,获得积分10
1分钟前
白榆完成签到 ,获得积分10
1分钟前
天天快乐应助cjh采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944591
求助须知:如何正确求助?哪些是违规求助? 4209453
关于积分的说明 13085313
捐赠科研通 3989186
什么是DOI,文献DOI怎么找? 2184034
邀请新用户注册赠送积分活动 1199383
关于科研通互助平台的介绍 1112390