Deep learning based time-to-event analysis with PET, CT and joint PET/CT for head and neck cancer prognosis

医学 正电子发射断层摄影术 核医学 一致性 头颈部癌 PET-CT 放射科 阶段(地层学) 分割 放射治疗 人工智能 计算机科学 内科学 古生物学 生物
作者
Yiling Wang,Elia Lombardo,Michele Avanzo,Sebastian Zschaek,Julian Weingärtner,Adrien Holzgreve,Nathalie L. Albert,Sebastian Marschner,Giuseppe Fanetti,Giovanni Franchin,Joseph Stancanello,Franziska Walter,Stefanie Corradini,Maximilian Niyazi,Jinyi Lang,Claus Belka,Marco Riboldi,Christopher Kurz,Guillaume Landry
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:222: 106948-106948 被引量:23
标识
DOI:10.1016/j.cmpb.2022.106948
摘要

Recent studies have shown that deep learning based on pre-treatment positron emission tomography (PET) or computed tomography (CT) is promising for distant metastasis (DM) and overall survival (OS) prognosis in head and neck cancer (HNC). However, lesion segmentation is typically required, resulting in a predictive power susceptible to variations in primary and lymph node gross tumor volume (GTV) segmentation. This study aimed at achieving prognosis without GTV segmentation, and extending single modality prognosis to joint PET/CT to allow investigating the predictive performance of combined- compared to single-modality inputs.We employed a 3D-Resnet combined with a time-to-event outcome model to incorporate censoring information. We focused on the prognosis of DM and OS for HNC patients. For each clinical endpoint, five models with PET and/or CT images as input were compared: PET-GTV, PET-only, CT-GTV, CT-only, and PET/CT-GTV models, where -GTV indicates that the corresponding images were masked using the GTV contour. Publicly available delineated CT and PET scans from 4 different Canadian hospitals (293) and the MAASTRO clinic (74) were used for training by 3-fold cross-validation (CV). For independent testing, we used 110 patients from a collaborating institution. The predictive performance was evaluated via Harrell's Concordance Index (HCI) and Kaplan-Meier curves.In a 5-year time-to-event analysis, all models could produce CV HCIs with median values around 0.8 for DM and 0.7 for OS. The best performance was obtained with the PET-only model, achieving a median testing HCI of 0.82 for DM and 0.69 for OS. Compared with the PET/CT-GTV model, the PET-only still had advantages of up to 0.07 in terms of testing HCI. The Kaplan-Meier curves and corresponding log-rank test results also demonstrated significant stratification capability of our models for the testing cohort.Deep learning-based DM and OS time-to-event models showed predictive capability and could provide indications for personalized RT. The best predictive performance achieved by the PET-only model suggested GTV segmentation might be less relevant for PET-based prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
傅勃霖发布了新的文献求助10
1秒前
苹果秋灵发布了新的文献求助10
4秒前
张雷应助22222采纳,获得30
4秒前
XLL小绿绿发布了新的文献求助10
4秒前
所所应助YYY采纳,获得10
5秒前
6秒前
han完成签到 ,获得积分10
8秒前
an发布了新的文献求助10
9秒前
517843291完成签到,获得积分10
10秒前
11秒前
000发布了新的文献求助10
11秒前
14秒前
14秒前
YYY完成签到,获得积分10
16秒前
logo关注了科研通微信公众号
17秒前
YYY发布了新的文献求助10
19秒前
han发布了新的文献求助30
21秒前
towerman完成签到,获得积分10
23秒前
23秒前
23秒前
和谐的雅旋完成签到,获得积分10
24秒前
小沈发布了新的文献求助10
26秒前
牛牛眉目发布了新的文献求助10
28秒前
隐形曼青应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
wanci应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得30
29秒前
XX应助科研通管家采纳,获得20
29秒前
今后应助科研通管家采纳,获得10
29秒前
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
29秒前
田様应助科研通管家采纳,获得10
29秒前
ED应助科研通管家采纳,获得30
29秒前
cube应助科研通管家采纳,获得60
29秒前
烟花应助科研通管家采纳,获得10
29秒前
bkagyin应助科研通管家采纳,获得10
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388