催化作用
可再生能源
生物量(生态学)
氧化物
甘油
纳米结构
金属
绿色化学
电化学
材料科学
电催化剂
化学
纳米技术
化学工程
有机化学
反应机理
冶金
电极
物理化学
工程类
海洋学
电气工程
地质学
作者
Lee Seul Oh,Minseon Park,Yoo Sei Park,Youngmin Kim,Wongeun Yoon,Jeemin Hwang,Eunho Lim,Jong Hyeok Park,Sung Mook Choi,Min Ho Seo,Won Bae Kim,Hyung Ju Kim
标识
DOI:10.1002/adma.202203285
摘要
Au and Pt are well-known catalysts for electrocatalytic oxidation of biomass-derived glycerol. Although some nonprecious-metal-based materials to replace the costly Au and Pt are used for this reaction, the fundamental question of how the nonprecious catalysts affect the reaction chemistry and mechanism compared to Au and Pt catalysts is still unanswered. In this work, both experimental and computational methods are used to understand how and why the reaction performance and chemistry for the electrocatalytic glycerol oxidation reaction (EGOR) change with electrochemically-synthesized CuCo-oxide, Cu-oxide, and Co-oxide catalysts compared to conventional Au and Pt catalysts. The Au and Pt catalysts generate major glyceric acid and glycolic acid products from the EGOR. Interestingly, the prepared Cu-based oxides produce glycolic acid and formic acid with high selectivity of about 90.0%. This different reaction chemistry is related to the enhanced ability of CC bond cleavage on the Cu-based oxide materials. The density functional theory calculations demonstrate that the formic acids are mainly formed on the Cu-based oxide surfaces rather than in the process of glycolic acid formation in the free energy diagram. This study provides critical scientific insights into developing future nonprecious-based materials for electrochemical biomass conversions.
科研通智能强力驱动
Strongly Powered by AbleSci AI