精密医学
突变
医学
癌症
肿瘤科
癌症治疗
靶向治疗
计算生物学
精确肿瘤学
生物信息学
内科学
生物
遗传学
病理
基因
作者
Ruishan Liu,Shemra Rizzo,Sarah Waliany,Marius Garmhausen,Navdeep Pal,Zhi Huang,Nayan Chaudhary,Lisa Wang,Chris Harbron,Joel W. Neal,Ryan Copping,James Zou
出处
期刊:Nature Medicine
[Springer Nature]
日期:2022-06-30
卷期号:28 (8): 1656-1661
被引量:33
标识
DOI:10.1038/s41591-022-01873-5
摘要
Quantifying the effectiveness of different cancer therapies in patients with specific tumor mutations is critical for improving patient outcomes and advancing precision medicine. Here we perform a large-scale computational analysis of 40,903 US patients with cancer who have detailed mutation profiles, treatment sequences and outcomes derived from electronic health records. We systematically identify 458 mutations that predict the survival of patients on specific immunotherapies, chemotherapy agents or targeted therapies across eight common cancer types. We further characterize mutation-mutation interactions that impact the outcomes of targeted therapies. This work demonstrates how computational analysis of large real-world data generates insights, hypotheses and resources to enable precision oncology.
科研通智能强力驱动
Strongly Powered by AbleSci AI