Single-Atom Iron Anchored on 2-D Graphene Carbon to Realize Bridge-Adsorption of O–O as Biomimetic Enzyme for Remarkably Sensitive Electrochemical Detection of H2O2

石墨烯 化学 吸附 电化学 碳纤维 无机化学 Atom(片上系统) 纳米技术 桥(图论) 化学工程 电极 材料科学 物理化学 复合数 嵌入式系统 工程类 医学 计算机科学 内科学 复合材料
作者
Juan Li,Chao Wu,Chengsong Yuan,Zhuanzhuan Shi,Kaiyue Zhang,Zhuo Zou,Lulu Xiong,Jie Chen,Yali Jiang,Wei Sun,Kanglai Tang,Hongbin Yang,Chang Ming Li
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (41): 14109-14117 被引量:34
标识
DOI:10.1021/acs.analchem.2c01001
摘要

Single-atom catalysis is mainly focused on its dispersed high-density catalytic sites, but delicate designs to realize a unique catalysis mechanism in terms of target reactions have been much less investigated. Herein an iron single atomic site catalyst anchored on 2-D N-doping graphene (Fe-SASC/G) was synthesized and further employed as a biomimetic sensor to electrochemically detect hydrogen peroxide, showing an extremely high sensitivity of 3214.28 μA mM–1 cm–2, which is much higher than that (6.5 μA mM–1 cm–2) of its dispersed on 1-D carbon nanowires (Fe-SASC/NW), ranking the best sensitivity among all reported Fe based catalyst at present. The sensor was also used to successfully in situ monitor H2O2 released from A549 living cells. The mechanism was further systematically investigated. Results interestingly indicate that the distance between adjacent single Fe atomic catalytic sites on 2-D graphene of Fe-SASC/G matches statistically well with the outer length of bioxygen of H2O2 to promote a bridge adsorption of −O–O– for simultaneous 2-electron transfer, while the single Fe atoms anchored on distant 1-D nanowires in Fe-SASC/NW only allow an end-adsorption of oxygen atoms for 1-electron transfer. These results demonstrate that Fe-SASC/G holds great promise as an advanced electrode material in selective and sensitive biomimetic sensor and other electrocatalytic applications, while offering scientific insights in deeper single atomic catalysis mechanisms, especially the effects of substrate dimensions on the mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨大仙儿完成签到 ,获得积分10
刚刚
2秒前
坚强的广山应助木头人采纳,获得200
2秒前
嘻哈学习完成签到,获得积分10
2秒前
2秒前
2秒前
ying完成签到,获得积分10
3秒前
3秒前
虚幻白玉完成签到,获得积分10
4秒前
安静的孤萍完成签到,获得积分10
5秒前
5秒前
lyz666发布了新的文献求助10
5秒前
liuxl发布了新的文献求助10
6秒前
smile完成签到,获得积分20
7秒前
Shuo Yang完成签到,获得积分10
7秒前
7秒前
伊酒发布了新的文献求助10
7秒前
蓉儿完成签到 ,获得积分10
8秒前
动人的梦之完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
小小爱吃百香果完成签到,获得积分20
11秒前
薪炭林应助空心采纳,获得30
11秒前
宫宛儿完成签到,获得积分10
11秒前
smile发布了新的文献求助10
12秒前
永远少年发布了新的文献求助10
13秒前
跳跃完成签到,获得积分20
13秒前
13秒前
14秒前
14秒前
14秒前
sansan发布了新的文献求助10
14秒前
tassssadar完成签到,获得积分10
15秒前
15秒前
通辽小判官完成签到,获得积分10
16秒前
曲蔚然发布了新的文献求助30
17秒前
liuxl完成签到,获得积分10
17秒前
长隆完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808