石墨烯
化学
吸附
电化学
碳纤维
无机化学
Atom(片上系统)
纳米技术
桥(图论)
化学工程
电极
材料科学
物理化学
复合数
嵌入式系统
工程类
医学
计算机科学
内科学
复合材料
作者
Juan Li,Chao Wu,Chengsong Yuan,Zhuanzhuan Shi,Kaiyue Zhang,Zhuo Zou,Lulu Xiong,Jie Chen,Yali Jiang,Wei Sun,Kanglai Tang,Hongbin Yang,Chang Ming Li
出处
期刊:Analytical Chemistry
[American Chemical Society]
日期:2022-06-21
卷期号:94 (41): 14109-14117
被引量:32
标识
DOI:10.1021/acs.analchem.2c01001
摘要
Single-atom catalysis is mainly focused on its dispersed high-density catalytic sites, but delicate designs to realize a unique catalysis mechanism in terms of target reactions have been much less investigated. Herein an iron single atomic site catalyst anchored on 2-D N-doping graphene (Fe-SASC/G) was synthesized and further employed as a biomimetic sensor to electrochemically detect hydrogen peroxide, showing an extremely high sensitivity of 3214.28 μA mM–1 cm–2, which is much higher than that (6.5 μA mM–1 cm–2) of its dispersed on 1-D carbon nanowires (Fe-SASC/NW), ranking the best sensitivity among all reported Fe based catalyst at present. The sensor was also used to successfully in situ monitor H2O2 released from A549 living cells. The mechanism was further systematically investigated. Results interestingly indicate that the distance between adjacent single Fe atomic catalytic sites on 2-D graphene of Fe-SASC/G matches statistically well with the outer length of bioxygen of H2O2 to promote a bridge adsorption of −O–O– for simultaneous 2-electron transfer, while the single Fe atoms anchored on distant 1-D nanowires in Fe-SASC/NW only allow an end-adsorption of oxygen atoms for 1-electron transfer. These results demonstrate that Fe-SASC/G holds great promise as an advanced electrode material in selective and sensitive biomimetic sensor and other electrocatalytic applications, while offering scientific insights in deeper single atomic catalysis mechanisms, especially the effects of substrate dimensions on the mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI