Single-Atom Iron Anchored on 2-D Graphene Carbon to Realize Bridge-Adsorption of O–O as Biomimetic Enzyme for Remarkably Sensitive Electrochemical Detection of H2O2

石墨烯 化学 吸附 电化学 碳纤维 无机化学 Atom(片上系统) 纳米技术 桥(图论) 化学工程 电极 材料科学 物理化学 复合数 嵌入式系统 工程类 医学 计算机科学 内科学 复合材料
作者
Juan Li,Chao Wu,Chengsong Yuan,Zhuanzhuan Shi,Kaiyue Zhang,Zhuo Zou,Lulu Xiong,Jie Chen,Yali Jiang,Wei Sun,Kanglai Tang,Hongbin Yang,Chang Ming Li
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (41): 14109-14117 被引量:32
标识
DOI:10.1021/acs.analchem.2c01001
摘要

Single-atom catalysis is mainly focused on its dispersed high-density catalytic sites, but delicate designs to realize a unique catalysis mechanism in terms of target reactions have been much less investigated. Herein an iron single atomic site catalyst anchored on 2-D N-doping graphene (Fe-SASC/G) was synthesized and further employed as a biomimetic sensor to electrochemically detect hydrogen peroxide, showing an extremely high sensitivity of 3214.28 μA mM–1 cm–2, which is much higher than that (6.5 μA mM–1 cm–2) of its dispersed on 1-D carbon nanowires (Fe-SASC/NW), ranking the best sensitivity among all reported Fe based catalyst at present. The sensor was also used to successfully in situ monitor H2O2 released from A549 living cells. The mechanism was further systematically investigated. Results interestingly indicate that the distance between adjacent single Fe atomic catalytic sites on 2-D graphene of Fe-SASC/G matches statistically well with the outer length of bioxygen of H2O2 to promote a bridge adsorption of −O–O– for simultaneous 2-electron transfer, while the single Fe atoms anchored on distant 1-D nanowires in Fe-SASC/NW only allow an end-adsorption of oxygen atoms for 1-electron transfer. These results demonstrate that Fe-SASC/G holds great promise as an advanced electrode material in selective and sensitive biomimetic sensor and other electrocatalytic applications, while offering scientific insights in deeper single atomic catalysis mechanisms, especially the effects of substrate dimensions on the mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉半凡完成签到,获得积分10
刚刚
赘婿应助eternity136采纳,获得10
2秒前
陈慧彬发布了新的文献求助10
2秒前
2秒前
123发布了新的文献求助10
2秒前
乐乐应助A怜采纳,获得10
3秒前
Akim应助Hululu采纳,获得10
3秒前
干啥啥行完成签到,获得积分10
3秒前
4秒前
4秒前
入江直熠完成签到,获得积分10
4秒前
自觉半凡发布了新的文献求助30
4秒前
李健的小迷弟应助杨丽佳采纳,获得10
5秒前
5秒前
标致的从寒完成签到,获得积分10
6秒前
杨春天完成签到,获得积分10
6秒前
foxbt完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
Ava应助干啥啥行采纳,获得10
8秒前
8秒前
8秒前
申申如也发布了新的文献求助10
9秒前
1332117762发布了新的文献求助10
9秒前
聪明的行云完成签到,获得积分10
10秒前
11秒前
燕熙发布了新的文献求助20
11秒前
俊逸灵雁发布了新的文献求助10
11秒前
12秒前
12秒前
科研通AI2S应助哟哟哟采纳,获得10
13秒前
13秒前
万能图书馆应助aurora采纳,获得10
14秒前
唐擎汉发布了新的文献求助10
14秒前
A怜发布了新的文献求助10
15秒前
cyl发布了新的文献求助10
16秒前
sea2023完成签到,获得积分10
16秒前
杨丽佳发布了新的文献求助10
16秒前
一半哒哒哒完成签到,获得积分20
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308961
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508381
捐赠科研通 2617401
什么是DOI,文献DOI怎么找? 1430069
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649234