化学
催化作用
纳米晶
肺表面活性物质
化学工程
支化(高分子化学)
吸附
纳米技术
电极
物理化学
有机化学
材料科学
生物化学
工程类
作者
Jiawei Liu,Futian You,Bowen He,Yinglong Wu,Dongdong Wang,Weiqiang Zhou,Cheng Qian,Guangbao Yang,Guofeng Liu,Hou Wang,Yi Guo,Long Gu,Lili Feng,Shuzhou Li,Yanli Zhao
摘要
Tailoring the morphology of nanocrystals is a promising way to enhance their catalytic performance. In most previous shape-controlled synthesis strategies, surfactants are inevitable due to their capability to stabilize different facets. However, the adsorbed surfactants block the intrinsic active sites of the nanocrystals, reducing their catalytic performance. For now, strategies to control the morphology without surfactants are still limited but necessary. Herein, a facile surfactant-free synthesis method is developed to regulate the morphology of Cu2O nanocrystals (e.g., solid nanocube, concave nanocube, cubic framework, branching nanocube, branching concave nanocube, and branching cubic framework) to enhance the electrocatalytic performance for the conversion of CO to n-propanol. Specifically, the Cu2O branching cubic framework (BCF-Cu2O), which is difficult to fabricate using previous surfactant-free methods, is fabricated by combining the concentration depletion effect and the oxidation etching process. More significantly, the BCF-Cu2O-derived catalyst (BCF) presents the highest n-propanol current density (-0.85 mA cm-2) at -0.45 V versus the reversible hydrogen electrode (VRHE), which is fivefold higher than that of the surfactant-coated Cu2O nanocube-derived catalyst (SFC, -0.17 mA cm-2). In terms of the n-propanol Faradaic efficiency in CO electroreduction, that of the BCF exhibits a 41% increase at -0.45 VRHE as compared with SFC. The high catalytic activity of the BCF that results from the clean surface and the coexistence of Cu(100) and Cu(110) in the lattice is well-supported by density functional theory calculations. Thus, this work presents an important paradigm for the facile fabrication of surface-clean nanocrystals with an enhanced application performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI