Directing the Architecture of Surface-Clean Cu2O for CO Electroreduction

化学 催化作用 纳米晶 肺表面活性物质 化学工程 支化(高分子化学) 吸附 纳米技术 电极 物理化学 有机化学 材料科学 生物化学 工程类
作者
Jiawei Liu,Futian You,Bowen He,Yinglong Wu,Dongdong Wang,Weiqiang Zhou,Cheng Qian,Guangbao Yang,Guofeng Liu,Hou Wang,Yi Guo,Long Gu,Lili Feng,Shuzhou Li,Yanli Zhao
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (27): 12410-12420 被引量:50
标识
DOI:10.1021/jacs.2c04260
摘要

Tailoring the morphology of nanocrystals is a promising way to enhance their catalytic performance. In most previous shape-controlled synthesis strategies, surfactants are inevitable due to their capability to stabilize different facets. However, the adsorbed surfactants block the intrinsic active sites of the nanocrystals, reducing their catalytic performance. For now, strategies to control the morphology without surfactants are still limited but necessary. Herein, a facile surfactant-free synthesis method is developed to regulate the morphology of Cu2O nanocrystals (e.g., solid nanocube, concave nanocube, cubic framework, branching nanocube, branching concave nanocube, and branching cubic framework) to enhance the electrocatalytic performance for the conversion of CO to n-propanol. Specifically, the Cu2O branching cubic framework (BCF-Cu2O), which is difficult to fabricate using previous surfactant-free methods, is fabricated by combining the concentration depletion effect and the oxidation etching process. More significantly, the BCF-Cu2O-derived catalyst (BCF) presents the highest n-propanol current density (-0.85 mA cm-2) at -0.45 V versus the reversible hydrogen electrode (VRHE), which is fivefold higher than that of the surfactant-coated Cu2O nanocube-derived catalyst (SFC, -0.17 mA cm-2). In terms of the n-propanol Faradaic efficiency in CO electroreduction, that of the BCF exhibits a 41% increase at -0.45 VRHE as compared with SFC. The high catalytic activity of the BCF that results from the clean surface and the coexistence of Cu(100) and Cu(110) in the lattice is well-supported by density functional theory calculations. Thus, this work presents an important paradigm for the facile fabrication of surface-clean nanocrystals with an enhanced application performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
QYPANG完成签到,获得积分10
1秒前
子时月完成签到,获得积分10
2秒前
脑洞疼应助xlx采纳,获得10
2秒前
jym完成签到,获得积分10
2秒前
2秒前
田様应助笑点低蜜蜂采纳,获得10
2秒前
今后应助乐观的一一采纳,获得10
3秒前
开朗向真完成签到,获得积分10
3秒前
3秒前
奋斗映寒发布了新的文献求助10
3秒前
梓榆发布了新的文献求助10
3秒前
帅气的沧海完成签到 ,获得积分10
3秒前
4秒前
FashionBoy应助包容的幻梅采纳,获得10
4秒前
4秒前
qaq完成签到,获得积分10
4秒前
4秒前
voyager完成签到,获得积分10
4秒前
勇敢肥猫发布了新的文献求助10
5秒前
YA发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
orixero应助玉yu采纳,获得10
6秒前
7秒前
sansan发布了新的文献求助10
7秒前
劉劉完成签到 ,获得积分10
8秒前
酷波er应助阳光的衫采纳,获得10
8秒前
火星上的菲鹰应助hkh采纳,获得10
8秒前
SciGPT应助Ll采纳,获得10
9秒前
buno应助懦弱的安珊采纳,获得10
9秒前
MADKAI发布了新的文献求助10
10秒前
happy完成签到,获得积分10
10秒前
丰知然完成签到,获得积分0
10秒前
马佳凯完成签到,获得积分20
11秒前
徐翩跹发布了新的文献求助10
11秒前
lan发布了新的文献求助10
11秒前
科研民工发布了新的文献求助10
11秒前
小二郎应助夏昼采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740