Reference section identification of construction specifications by a deep structured semantic model

计算机科学 鉴定(生物学) 章节(排版) 独创性 投标 余弦相似度 任务(项目管理) 过程(计算) 情报检索 相似性(几何) 领域(数学分析) 人工智能 自然语言处理 程序设计语言 图像(数学) 工程类 模式识别(心理学) 数学分析 植物 数学 系统工程 营销 创造力 政治学 法学 业务 生物 操作系统
作者
Gitaek Lee,Seonghyeon Moon,Seokho Chi
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
卷期号:30 (9): 4358-4386 被引量:2
标识
DOI:10.1108/ecam-10-2021-0920
摘要

Purpose Contractors must check the provisions that may cause disputes in the specifications to manage project risks when bidding for a construction project. However, since the specification is mainly written regarding many national standards, determining which standard each section of the specification is derived from and whether the content is appropriate for the local site is a labor-intensive task. To develop an automatic reference section identification model that helps complete the specification review process in short bidding steps, the authors proposed a framework that integrates rules and machine learning algorithms. Design/methodology/approach The study begins by collecting 7,795 sections from construction specifications and the national standards from different countries. Then, the collected sections were retrieved for similar section pairs with syntactic rules generated by the construction domain knowledge. Finally, to improve the reliability and expandability of the section paring, the authors built a deep structured semantic model that increases the cosine similarity between documents dealing with the same topic by learning human-labeled similarity information. Findings The integrated model developed in this study showed 0.812, 0.898, and 0.923 levels of performance in NDCG@1, NDCG@5, and NDCG@10, respectively, confirming that the model can adequately select document candidates that require comparative analysis of clauses for practitioners. Originality/value The results contribute to more efficient and objective identification of potential disputes within the specifications by automatically providing practitioners with the reference section most relevant to the analysis target section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助白方明采纳,获得10
刚刚
喵帕斯发布了新的文献求助10
1秒前
姜姜完成签到 ,获得积分10
1秒前
1秒前
1秒前
睡不醒完成签到,获得积分10
1秒前
健忘水卉发布了新的文献求助10
1秒前
2秒前
夏小夏完成签到,获得积分10
2秒前
科研通AI5应助好好学习采纳,获得10
2秒前
issada发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
FashionBoy应助大力的觅云采纳,获得10
6秒前
夏小夏发布了新的文献求助10
6秒前
JamesPei应助极品女杀手采纳,获得10
6秒前
脑洞疼应助curtain采纳,获得10
6秒前
6秒前
6秒前
gege发布了新的文献求助20
7秒前
小白发布了新的文献求助10
7秒前
荷雾完成签到,获得积分10
7秒前
8秒前
华伯祥发布了新的文献求助10
8秒前
8秒前
8秒前
issada完成签到,获得积分10
8秒前
8秒前
sun发布了新的文献求助50
9秒前
英俊的铭应助zz采纳,获得10
9秒前
个性的紫菜应助xiaoq采纳,获得10
9秒前
10秒前
爱唱歌的yu仔完成签到,获得积分10
10秒前
天真大神发布了新的文献求助10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483444
求助须知:如何正确求助?哪些是违规求助? 3072776
关于积分的说明 9127955
捐赠科研通 2764341
什么是DOI,文献DOI怎么找? 1517151
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797