Evaluating the safety of autonomous vehicle–pedestrian interactions: An extreme value theory approach

行人 航程(航空) 弹道 计算机科学 碰撞 激光雷达 车辆行驶里程 运输工程 工程类 计算机安全 地理 航空航天工程 物理 遥感 天文
作者
Abdul Razak Alozi,Mohamed Hussein
出处
期刊:Analytic Methods in Accident Research [Elsevier]
卷期号:35: 100230-100230 被引量:33
标识
DOI:10.1016/j.amar.2022.100230
摘要

With the increasing advancements in autonomous vehicle (AV) technologies, the forecasts of AV market shares seem to follow an ever-growing trend. This leads to the inherent need for proactive safety evaluations of AV impacts on other road users. To that end, this study proposes a modeling framework for the proactive assessment of pedestrian safety in AV environments. The proposed framework relies on the Extreme Value Theory (EVT), with the peak over threshold modeling technique, to develop an estimate of AV-pedestrian collisions using AV-pedestrian conflicts. The proposed framework was applied to two AV datasets, collected from three locations in the US and Singapore, using the operating AV fleets of two developers, Motional and Lyft. Both datasets included trajectory data for the subject AV, as well as LiDAR point clouds and annotated video data from AV cameras to capture the trajectories of surrounding road users. The datasets were processed to extract the AV-pedestrian conflicts along with the corresponding conflict indicators, mainly the post-encroachment time (PET) and time-to-collision (TTC). Relevant covariates were introduced to the proposed models to enhance their performance and prediction accuracy, including turning movements and conflict speeds. The results indicate an alarming risk to pedestrians when interacting with AVs, especially at the early stages of AV adoption. The expected number of collisions ranged from 4 to 5.5 per million vehicle kilometers travelled (VKT) of the AVs. With the addition of the covariates, the expected number of collisions went down to a range of 2.3–3.7 per million VKT, but with a narrower confidence interval of the resulting estimate and a better fit. The introduced approach shows promising prospects for the application of EVT methods to address AV safety impacts. It also invites future applications to address issues of concern for pedestrian safety in different conditions of urban traffic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海鹰发布了新的文献求助100
1秒前
不配.应助虚拟的落雁采纳,获得20
1秒前
OvO完成签到,获得积分10
1秒前
2秒前
3秒前
chenling完成签到,获得积分10
3秒前
沉静幻天发布了新的文献求助10
4秒前
OvO发布了新的文献求助10
5秒前
zhuyq发布了新的文献求助10
6秒前
6秒前
Chanceman完成签到,获得积分10
6秒前
susie完成签到,获得积分10
7秒前
Jasper应助外向寄云采纳,获得10
7秒前
Wayne发布了新的文献求助10
7秒前
苏尔琳诺完成签到,获得积分10
8秒前
小云完成签到,获得积分10
8秒前
9秒前
COCO完成签到,获得积分10
9秒前
zszzzsss完成签到,获得积分10
9秒前
儒雅的以山完成签到 ,获得积分10
11秒前
刘yuer完成签到,获得积分10
12秒前
在水一方应助科研潜水采纳,获得10
12秒前
12秒前
YDSL完成签到,获得积分10
12秒前
甜美的月饼完成签到,获得积分10
12秒前
13秒前
lll完成签到,获得积分10
13秒前
闷声发完成签到,获得积分10
13秒前
幸福安康完成签到 ,获得积分10
14秒前
呐呐完成签到 ,获得积分10
14秒前
14秒前
机灵夏云完成签到,获得积分10
15秒前
20240901完成签到,获得积分10
15秒前
xiaostou完成签到,获得积分10
15秒前
15秒前
16秒前
今后应助iufan采纳,获得10
16秒前
LL完成签到,获得积分10
17秒前
外向寄云发布了新的文献求助10
17秒前
小居很哇塞完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134355
求助须知:如何正确求助?哪些是违规求助? 2785254
关于积分的说明 7770963
捐赠科研通 2440904
什么是DOI,文献DOI怎么找? 1297556
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792