Advances in chiral separation and analysis by capillary electrophoresis-mass spectrometry

色谱法 对映体 毛细管电泳 质谱法 化学 分辨率(逻辑) 毛细管电泳-质谱法 代谢组学 高效液相色谱法 液相色谱-质谱法 计算机科学 电喷雾电离 有机化学 人工智能
作者
Zhongmei Chi,Li Yang
出处
期刊:Sepu [Science Press]
卷期号:40 (6): 509-519 被引量:3
标识
DOI:10.3724/sp.j.1123.2021.11006
摘要

Most drugs used to treat diseases are chiral compounds. Drug enantiomers possess similar physical and chemical properties but may feature distinct pharmacological activities. Drug enantiomers may also exhibit different or even opposite functionalities for metabolism, in terms of the metabolic rate and toxicity in the body. Therefore, it is imperative to analyze, separate, and purify the enantiomers of drugs. The separation of chiral compounds is essential for drug research and development. It is also of significance in various fields including biological environments, food, and medicine. Various highly selective and sensitive methods have been developed for the quantitative and qualitative analyses of chiral compounds. A typically employed technique is high performance liquid chromatography-mass spectrometry (HPLC-MS). While HPLC-MS offers high sensitivity and reproducibility, it requires expensive chiral columns and MS-compatible mobile phases for the chromatographic column. Further, the column efficiency and resolution capacity in chiral chromatography packing require improvement. Recent progress has shown that capillary electrophoresis-mass spectrometry (CE-MS) has broad applications in chiral analysis. As a well-established analytical technique, CE-MS combines the highly efficient separation technique of CE with the highly sensitive detection technique of MS. Thus, it offers many essential advantages for analysis. For example, CE-MS has a high separation efficiency and requires very low amounts of samples and reagents. It can also achieve sensitive and selective determination, and the obtained diversified separation modes can be used for different samples. Therefore, CE-MS has proved to be important in analytical chemistry, especially in proteomics and metabolomics. CE can also exhibit excellent performance in chiral separation. Hence, combined with the sensitive detection technique of MS, CE-MS would be ideal for chiral analysis. Chiral CE-MS can provide a wide range of qualitative information on samples simultaneously in a single run, including the migration time, relative molecular mass, and ionic fragments. It addresses the challenges associated with identifying unknown chiral compounds in actual samples (including chiral compounds without UV absorption groups or fluorescence groups). The high-throughput analysis of multiple groups of chiral enantiomers can be achieved while mitigating the matrix effect of biological samples. In the last ten years, high performance chiral analysis strategies based on different CE-MS modes have been developed. These include electrokinetic chromatography-mass spectrometry (EKC-MS), micellar electrokinetic chromatography-mass spectrometry (MEKC-MS), and capillary electrochromatography-mass spectrometry (CEC-MS). CE-MS has been successfully applied in chiral analysis in various fields such as medicine, biology, food, and environmental science. CE-MS is promising in the chiral analysis of drugs, especially for drug development and drug quality control, as well as pharmacokinetics and pharmacodynamics research. Recent studies have focused on the development of MS-friendly and highly selective chiral analytical methods, which will broaden the application of CE-MS. In CEC-MS chiral analysis, more attention has been paid to developing novel capillary chiral stationary phases for monolithic or packed columns. Because of the diversity of chiral selectors for EKC-MS and MEKC-MS, the chiral analysis of drugs using these techniques has attracted intense research interest. Moreover, functional nanoparticles have been employed to increase the surface area of the CEC columns for enhancing the efficiency of chiral analysis. The chiral separation and analysis of miniaturized microchip equipment via CE-MS has also been explored, but remains to be widely used in practical applications. The purpose of this review is to provide insights that would aid in broadening the applications of CE-MS to chiral analysis. In this review, we primarily summarize research progress on the application of CE-MS to chiral analysis, based on the literature published during the years 2011-2021. Chiral selectors (e. g., modified cyclodextrin and polymer surfactants) and their reported applications in CE-MS are presented. The determination results for drug enantiomers using different CE-MS modes are compared. The application of CE-MS in other research fields is also presented, along with the advantages and limitations of different CE-MS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
song发布了新的文献求助10
刚刚
Maestro_S应助jyyg采纳,获得10
刚刚
1秒前
asd_1发布了新的文献求助10
2秒前
单纯板栗发布了新的文献求助10
4秒前
浮游应助Raye采纳,获得10
4秒前
波波完成签到,获得积分10
4秒前
4秒前
夜尽天明应助琪哒采纳,获得10
4秒前
5秒前
5秒前
咸鱼发布了新的文献求助10
5秒前
5秒前
善学以致用应助WANGJD采纳,获得10
6秒前
PigaChu发布了新的文献求助10
6秒前
Haries完成签到,获得积分10
6秒前
tlc_191026完成签到,获得积分10
6秒前
小伍同学完成签到,获得积分10
7秒前
伊雪儿完成签到,获得积分10
7秒前
科研通AI2S应助077采纳,获得10
8秒前
杨知意完成签到,获得积分10
8秒前
nightmoonsun发布了新的文献求助10
9秒前
柚子发布了新的文献求助10
10秒前
10秒前
10秒前
在水一方应助吴帆采纳,获得10
11秒前
高分子物理不会完成签到,获得积分10
11秒前
Jessica完成签到,获得积分20
11秒前
善学以致用应助clone2012采纳,获得30
11秒前
雨张发布了新的文献求助20
11秒前
12秒前
13秒前
13秒前
红柚完成签到,获得积分10
13秒前
豪豪完成签到,获得积分10
14秒前
一一完成签到 ,获得积分10
14秒前
wyc完成签到,获得积分10
15秒前
不想干活应助yzbbb采纳,获得10
15秒前
bkagyin应助研友_89jWGL采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426