Detection of motor-evoked potentials below the noise floor: rethinking the motor stimulation threshold

神经生理学 噪音(视频) 磁刺激 计算机科学 兴奋性突触后电位 刺激 诱发电位 神经科学 稳健性(进化) 语音识别 模式识别(心理学) 人工智能
作者
Zhongxi Li,Angel V Peterchev,John C Rothwell,Stefan M. Goetz
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ac7dfc
摘要

Motor-evoked potentials (MEP) are one of the most prominent responses to brain stimulation, such as supra-threshold transcranial magnetic stimulation (TMS) and electrical stimulation. Understanding of the neurophysiology and the determination of the lowest stimulation strength that evokes responses requires the detection of even smaller responses, e.g., from single motor units. However, available detection and quantization methods suffer from a large noise floor.This paper develops a detection method that extracts MEPs hidden below the noise floor. With this method, we aim to estimate excitatory activations of the corticospinal pathways well below the conventional detection level.The presented MEP detection method presents a self-learning matched-filter approach for improved robustness against noise. The filter is adaptively generated per subject through iterative learning. For responses that are reliably detected by conventional detection, the new approach is fully compatible with established peak-to-peak readings and provides the same results but extends the dynamic range below the conventional noise floor.In contrast to the conventional peak-to-peak measure, the proposed method increases the signal-to-noise ratio by more than a factor of 5. The first detectable responses appear to be substantially lower than the conventional threshold definition of 50 µV median peak-to-peak amplitude.The proposed method shows that stimuli well below the conventional 50 µV threshold definition can consistently and repeatably evoke muscular responses and thus activate excitable neuron populations in the brain. As a consequence, the IO curve is extended at the lower end, and the noise cut-off is shifted. Importantly, the IO curve extends so far that the 50 µV point turns out to be closer to the center of the logarithmic sigmoid curve rather than close to the first detectable responses. The underlying method is applicable to a wide range of evoked potentials and other biosignals, such as in electroencephalography.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzzzzzz发布了新的文献求助10
1秒前
严健翎完成签到,获得积分10
2秒前
大方酶发布了新的文献求助20
2秒前
微笑老太发布了新的文献求助30
2秒前
3秒前
英姑应助活泼的如容采纳,获得10
3秒前
bear完成签到,获得积分20
3秒前
烟花应助YULIA采纳,获得30
3秒前
3秒前
3秒前
臧为发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
科研通AI6应助bkok采纳,获得10
4秒前
薄荷完成签到,获得积分10
5秒前
dew应助芝士草莓蛋挞采纳,获得10
5秒前
英俊的铭应助szp采纳,获得10
5秒前
meng发布了新的文献求助10
5秒前
5秒前
5秒前
欢呼冷亦完成签到,获得积分10
5秒前
5秒前
5秒前
青柚子完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
青苔发布了新的文献求助10
9秒前
rock发布了新的文献求助10
9秒前
9秒前
流露完成签到,获得积分10
9秒前
玥越发布了新的文献求助10
10秒前
沉静的悒发布了新的文献求助10
10秒前
LIUJC完成签到,获得积分10
10秒前
xiuwen发布了新的文献求助10
10秒前
qianyuanyu发布了新的文献求助10
10秒前
11秒前
灿星发布了新的文献求助10
12秒前
12秒前
lucky37发布了新的文献求助10
13秒前
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614975
求助须知:如何正确求助?哪些是违规求助? 4699849
关于积分的说明 14905634
捐赠科研通 4740875
什么是DOI,文献DOI怎么找? 2547874
邀请新用户注册赠送积分活动 1511649
关于科研通互助平台的介绍 1473715