Detection of motor-evoked potentials below the noise floor: rethinking the motor stimulation threshold

神经生理学 噪音(视频) 磁刺激 计算机科学 兴奋性突触后电位 刺激 诱发电位 神经科学 稳健性(进化) 语音识别 模式识别(心理学) 人工智能
作者
Zhongxi Li,Angel V Peterchev,John C Rothwell,Stefan M. Goetz
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ac7dfc
摘要

Motor-evoked potentials (MEP) are one of the most prominent responses to brain stimulation, such as supra-threshold transcranial magnetic stimulation (TMS) and electrical stimulation. Understanding of the neurophysiology and the determination of the lowest stimulation strength that evokes responses requires the detection of even smaller responses, e.g., from single motor units. However, available detection and quantization methods suffer from a large noise floor.This paper develops a detection method that extracts MEPs hidden below the noise floor. With this method, we aim to estimate excitatory activations of the corticospinal pathways well below the conventional detection level.The presented MEP detection method presents a self-learning matched-filter approach for improved robustness against noise. The filter is adaptively generated per subject through iterative learning. For responses that are reliably detected by conventional detection, the new approach is fully compatible with established peak-to-peak readings and provides the same results but extends the dynamic range below the conventional noise floor.In contrast to the conventional peak-to-peak measure, the proposed method increases the signal-to-noise ratio by more than a factor of 5. The first detectable responses appear to be substantially lower than the conventional threshold definition of 50 µV median peak-to-peak amplitude.The proposed method shows that stimuli well below the conventional 50 µV threshold definition can consistently and repeatably evoke muscular responses and thus activate excitable neuron populations in the brain. As a consequence, the IO curve is extended at the lower end, and the noise cut-off is shifted. Importantly, the IO curve extends so far that the 50 µV point turns out to be closer to the center of the logarithmic sigmoid curve rather than close to the first detectable responses. The underlying method is applicable to a wide range of evoked potentials and other biosignals, such as in electroencephalography.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
EV发布了新的文献求助10
3秒前
6秒前
科研通AI5应助boom采纳,获得10
8秒前
YYYYYY完成签到,获得积分10
9秒前
9秒前
暴躁的丝完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
zzzzzzzzzzzzb完成签到,获得积分10
16秒前
16秒前
16秒前
帝蒼完成签到,获得积分10
16秒前
17秒前
柠橙完成签到,获得积分10
18秒前
张贵川完成签到 ,获得积分10
19秒前
科研通AI6应助执着烧鹅采纳,获得10
19秒前
加油发布了新的文献求助50
20秒前
12完成签到,获得积分10
20秒前
张德帅完成签到,获得积分10
20秒前
boom发布了新的文献求助10
21秒前
呆萌的大炮完成签到,获得积分10
21秒前
pia叽完成签到 ,获得积分10
21秒前
caichengyu发布了新的文献求助10
21秒前
酷波er应助高高的网络采纳,获得10
24秒前
ding应助缓慢含烟采纳,获得10
24秒前
照亮世界的ay完成签到,获得积分10
26秒前
26秒前
26秒前
脑洞疼应助caichengyu采纳,获得10
28秒前
nikonikoni完成签到,获得积分10
28秒前
28秒前
boom完成签到,获得积分10
28秒前
Lynsey完成签到,获得积分10
29秒前
Huang发布了新的文献求助10
31秒前
amy发布了新的文献求助10
31秒前
32秒前
33秒前
诸葛藏藏完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073428
求助须知:如何正确求助?哪些是违规求助? 4293518
关于积分的说明 13378782
捐赠科研通 4114951
什么是DOI,文献DOI怎么找? 2253260
邀请新用户注册赠送积分活动 1258050
关于科研通互助平台的介绍 1190911