Detection of motor-evoked potentials below the noise floor: rethinking the motor stimulation threshold

神经生理学 噪音(视频) 磁刺激 计算机科学 兴奋性突触后电位 刺激 诱发电位 神经科学 稳健性(进化) 语音识别 模式识别(心理学) 人工智能
作者
Zhongxi Li,Angel V Peterchev,John C Rothwell,Stefan M. Goetz
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ac7dfc
摘要

Motor-evoked potentials (MEP) are one of the most prominent responses to brain stimulation, such as supra-threshold transcranial magnetic stimulation (TMS) and electrical stimulation. Understanding of the neurophysiology and the determination of the lowest stimulation strength that evokes responses requires the detection of even smaller responses, e.g., from single motor units. However, available detection and quantization methods suffer from a large noise floor.This paper develops a detection method that extracts MEPs hidden below the noise floor. With this method, we aim to estimate excitatory activations of the corticospinal pathways well below the conventional detection level.The presented MEP detection method presents a self-learning matched-filter approach for improved robustness against noise. The filter is adaptively generated per subject through iterative learning. For responses that are reliably detected by conventional detection, the new approach is fully compatible with established peak-to-peak readings and provides the same results but extends the dynamic range below the conventional noise floor.In contrast to the conventional peak-to-peak measure, the proposed method increases the signal-to-noise ratio by more than a factor of 5. The first detectable responses appear to be substantially lower than the conventional threshold definition of 50 µV median peak-to-peak amplitude.The proposed method shows that stimuli well below the conventional 50 µV threshold definition can consistently and repeatably evoke muscular responses and thus activate excitable neuron populations in the brain. As a consequence, the IO curve is extended at the lower end, and the noise cut-off is shifted. Importantly, the IO curve extends so far that the 50 µV point turns out to be closer to the center of the logarithmic sigmoid curve rather than close to the first detectable responses. The underlying method is applicable to a wide range of evoked potentials and other biosignals, such as in electroencephalography.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樊冉冉完成签到,获得积分20
刚刚
刚刚
刚刚
摘要发布了新的文献求助10
1秒前
Happy422发布了新的文献求助20
1秒前
在水一方应助KING采纳,获得10
1秒前
LLL发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
无极微光应助轻云触月采纳,获得20
2秒前
FashionBoy应助果果采纳,获得10
2秒前
思源应助me采纳,获得10
2秒前
li发布了新的文献求助10
2秒前
科研通AI6应助甲乙丙丁采纳,获得10
3秒前
顾矜应助尧章采纳,获得10
3秒前
3秒前
完美世界应助类囊体薄膜采纳,获得10
3秒前
Zhang完成签到,获得积分10
3秒前
耍酷宝川完成签到,获得积分10
3秒前
上官若男应助香香采纳,获得10
3秒前
叶寻应助文件撤销了驳回
3秒前
穆梦山发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
orixero应助Ailash采纳,获得10
4秒前
4秒前
111完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
An发布了新的文献求助10
6秒前
JIAYIWANG应助Hs采纳,获得10
6秒前
NexusExplorer应助王晓茜采纳,获得10
6秒前
6秒前
歪歪发布了新的文献求助10
6秒前
kevinjy完成签到,获得积分10
6秒前
深情安青应助mengtian采纳,获得10
7秒前
万能图书馆应助ccc采纳,获得10
7秒前
7秒前
欢呼的铅笔完成签到,获得积分10
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620157
求助须知:如何正确求助?哪些是违规求助? 4704645
关于积分的说明 14928760
捐赠科研通 4760959
什么是DOI,文献DOI怎么找? 2550765
邀请新用户注册赠送积分活动 1513518
关于科研通互助平台的介绍 1474498