清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Histopathologic Basis for a Chest CT Deep Learning Survival Prediction Model in Patients with Lung Adenocarcinoma

医学 腺癌 放射科 淋巴血管侵犯 优势比 内科学 比例危险模型 肺腺癌 回顾性队列研究 旁侵犯 肿瘤科 转移 癌症
作者
Ju Gang Nam,Samina Park,Chang Min Park,Yoon Kyung Jeon,Doo Hyun Chung,Jin Mo Goo,Young Tae Kim,Hyungjin Kim
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (2): 441-451 被引量:11
标识
DOI:10.1148/radiol.213262
摘要

Background A preoperative CT-based deep learning (DL) prediction model was proposed to estimate disease-free survival in patients with resected lung adenocarcinoma. However, the black-box nature of DL hinders interpretation of its results. Purpose To provide histopathologic evidence underpinning the DL survival prediction model and to demonstrate the feasibility of the model in identifying patients with histopathologic risk factors through unsupervised clustering and a series of regression analyses. Materials and Methods For this retrospective study, data from patients who underwent curative resection for lung adenocarcinoma without neoadjuvant therapy from January 2016 to September 2020 were collected from a tertiary care center. Seven histopathologic risk factors for the resected adenocarcinoma were documented: the aggressive adenocarcinoma subtype (cribriform, morular, solid, or micropapillary-predominant subtype); mediastinal nodal metastasis (pN2); presence of lymphatic, venous, and perineural invasion; visceral pleural invasion (VPI); and EGFR mutation status. Unsupervised clustering using 80 DL model–driven CT features was performed, and associations between the patient clusters and the histopathologic features were analyzed. Multivariable regression analyses were performed to investigate the added value of the DL model output to the semantic CT features (clinical T category and radiologic nodule type [ie, solid or subsolid]) for histopathologic associations. Results A total of 1667 patients (median age, 64 years [IQR, 57–71 years]; 975 women) were evaluated. Unsupervised patient clusters 3 and 4 were associated with all histopathologic risk factors (P < .01) except for EGFR mutation status (P = .30 for cluster 3). After multivariable adjustment, model output was associated with the aggressive adenocarcinoma subtype (odds ratio [OR], 1.03; 95% CI: 1.002, 1.05; P = .03), venous invasion (OR, 1.03; 95% CI: 1.004, 1.06; P = .02), and VPI (OR, 1.08; 95% CI: 1.06, 1.10; P < .001), independently of the semantic CT features. Conclusion The deep learning model extracted CT imaging surrogates for the histopathologic profiles of lung adenocarcinoma. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Yanagawa in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚老表完成签到,获得积分10
16秒前
爆米花应助hani采纳,获得10
44秒前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得30
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
thangxtz完成签到,获得积分10
1分钟前
李健应助zhangyimg采纳,获得10
1分钟前
云木完成签到 ,获得积分10
1分钟前
方白秋完成签到,获得积分10
1分钟前
yangquanquan完成签到,获得积分10
1分钟前
1分钟前
zhangyimg发布了新的文献求助10
2分钟前
merrylake完成签到 ,获得积分10
2分钟前
仿真小学生完成签到,获得积分10
2分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得30
3分钟前
GCD完成签到 ,获得积分10
3分钟前
4分钟前
烨枫晨曦完成签到,获得积分10
4分钟前
feiying发布了新的文献求助10
4分钟前
5分钟前
feiying完成签到,获得积分10
5分钟前
紫熊发布了新的文献求助10
5分钟前
6分钟前
Philip发布了新的文献求助10
6分钟前
6分钟前
hani发布了新的文献求助10
7分钟前
hani完成签到,获得积分10
7分钟前
紫熊完成签到,获得积分10
7分钟前
Lucas应助杨明明采纳,获得10
8分钟前
8分钟前
丹晨发布了新的文献求助10
8分钟前
丹晨完成签到,获得积分10
8分钟前
小马甲应助丹晨采纳,获得10
8分钟前
吴端完成签到,获得积分10
8分钟前
Yvonne完成签到,获得积分20
9分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826669
捐赠科研通 2454573
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527