Histopathologic Basis for a Chest CT Deep Learning Survival Prediction Model in Patients with Lung Adenocarcinoma

医学 腺癌 放射科 淋巴血管侵犯 优势比 内科学 比例危险模型 肺腺癌 回顾性队列研究 旁侵犯 肿瘤科 转移 癌症
作者
Ju Gang Nam,Samina Park,Chang Min Park,Yoon Kyung Jeon,Doo Hyun Chung,Jin Mo Goo,Young Tae Kim,Hyungjin Kim
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (2): 441-451 被引量:21
标识
DOI:10.1148/radiol.213262
摘要

Background A preoperative CT-based deep learning (DL) prediction model was proposed to estimate disease-free survival in patients with resected lung adenocarcinoma. However, the black-box nature of DL hinders interpretation of its results. Purpose To provide histopathologic evidence underpinning the DL survival prediction model and to demonstrate the feasibility of the model in identifying patients with histopathologic risk factors through unsupervised clustering and a series of regression analyses. Materials and Methods For this retrospective study, data from patients who underwent curative resection for lung adenocarcinoma without neoadjuvant therapy from January 2016 to September 2020 were collected from a tertiary care center. Seven histopathologic risk factors for the resected adenocarcinoma were documented: the aggressive adenocarcinoma subtype (cribriform, morular, solid, or micropapillary-predominant subtype); mediastinal nodal metastasis (pN2); presence of lymphatic, venous, and perineural invasion; visceral pleural invasion (VPI); and EGFR mutation status. Unsupervised clustering using 80 DL model–driven CT features was performed, and associations between the patient clusters and the histopathologic features were analyzed. Multivariable regression analyses were performed to investigate the added value of the DL model output to the semantic CT features (clinical T category and radiologic nodule type [ie, solid or subsolid]) for histopathologic associations. Results A total of 1667 patients (median age, 64 years [IQR, 57–71 years]; 975 women) were evaluated. Unsupervised patient clusters 3 and 4 were associated with all histopathologic risk factors (P < .01) except for EGFR mutation status (P = .30 for cluster 3). After multivariable adjustment, model output was associated with the aggressive adenocarcinoma subtype (odds ratio [OR], 1.03; 95% CI: 1.002, 1.05; P = .03), venous invasion (OR, 1.03; 95% CI: 1.004, 1.06; P = .02), and VPI (OR, 1.08; 95% CI: 1.06, 1.10; P < .001), independently of the semantic CT features. Conclusion The deep learning model extracted CT imaging surrogates for the histopathologic profiles of lung adenocarcinoma. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Yanagawa in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
88完成签到,获得积分10
刚刚
我是站长才怪应助谭谨川采纳,获得10
刚刚
1233发布了新的文献求助10
1秒前
bismarck7完成签到,获得积分10
1秒前
1秒前
1秒前
田様应助淡淡采白采纳,获得10
1秒前
赖道之发布了新的文献求助10
2秒前
calbee完成签到,获得积分10
2秒前
2秒前
和谐白云完成签到,获得积分10
3秒前
3秒前
3秒前
王w发布了新的文献求助10
4秒前
yyyyy完成签到,获得积分10
5秒前
5秒前
大侠发布了新的文献求助10
5秒前
魁梧的乐天完成签到,获得积分20
5秒前
冯度翩翩完成签到,获得积分10
6秒前
科研通AI2S应助satchzhao采纳,获得10
6秒前
jijizz完成签到,获得积分10
7秒前
一一发布了新的文献求助10
7秒前
小马甲应助ChiDaiOLD采纳,获得10
7秒前
7秒前
鳗鱼灵寒发布了新的文献求助10
8秒前
shatang发布了新的文献求助10
8秒前
lesyeuxdexx完成签到 ,获得积分10
10秒前
11秒前
程琳完成签到,获得积分20
12秒前
13秒前
卓哥发布了新的文献求助10
13秒前
科研通AI5应助sansan采纳,获得10
14秒前
14秒前
14秒前
脑洞疼应助杰森斯坦虎采纳,获得10
14秒前
16秒前
17秒前
研友_QQC完成签到,获得积分10
17秒前
NeuroWhite完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808