Histopathologic Basis for a Chest CT Deep Learning Survival Prediction Model in Patients with Lung Adenocarcinoma

医学 腺癌 放射科 淋巴血管侵犯 优势比 内科学 比例危险模型 肺腺癌 回顾性队列研究 旁侵犯 肿瘤科 转移 癌症
作者
Ju Gang Nam,Samina Park,Chang Min Park,Yoon Kyung Jeon,Doo Hyun Chung,Jin Mo Goo,Young Tae Kim,Hyungjin Kim
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (2): 441-451 被引量:22
标识
DOI:10.1148/radiol.213262
摘要

Background A preoperative CT-based deep learning (DL) prediction model was proposed to estimate disease-free survival in patients with resected lung adenocarcinoma. However, the black-box nature of DL hinders interpretation of its results. Purpose To provide histopathologic evidence underpinning the DL survival prediction model and to demonstrate the feasibility of the model in identifying patients with histopathologic risk factors through unsupervised clustering and a series of regression analyses. Materials and Methods For this retrospective study, data from patients who underwent curative resection for lung adenocarcinoma without neoadjuvant therapy from January 2016 to September 2020 were collected from a tertiary care center. Seven histopathologic risk factors for the resected adenocarcinoma were documented: the aggressive adenocarcinoma subtype (cribriform, morular, solid, or micropapillary-predominant subtype); mediastinal nodal metastasis (pN2); presence of lymphatic, venous, and perineural invasion; visceral pleural invasion (VPI); and EGFR mutation status. Unsupervised clustering using 80 DL model–driven CT features was performed, and associations between the patient clusters and the histopathologic features were analyzed. Multivariable regression analyses were performed to investigate the added value of the DL model output to the semantic CT features (clinical T category and radiologic nodule type [ie, solid or subsolid]) for histopathologic associations. Results A total of 1667 patients (median age, 64 years [IQR, 57–71 years]; 975 women) were evaluated. Unsupervised patient clusters 3 and 4 were associated with all histopathologic risk factors (P < .01) except for EGFR mutation status (P = .30 for cluster 3). After multivariable adjustment, model output was associated with the aggressive adenocarcinoma subtype (odds ratio [OR], 1.03; 95% CI: 1.002, 1.05; P = .03), venous invasion (OR, 1.03; 95% CI: 1.004, 1.06; P = .02), and VPI (OR, 1.08; 95% CI: 1.06, 1.10; P < .001), independently of the semantic CT features. Conclusion The deep learning model extracted CT imaging surrogates for the histopathologic profiles of lung adenocarcinoma. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Yanagawa in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助77采纳,获得10
刚刚
刚刚
1秒前
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
大脑袋应助科研通管家采纳,获得30
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
光影相生应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
彭于晏应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
3秒前
无昵称完成签到 ,获得积分10
4秒前
shanhuo发布了新的文献求助15
5秒前
6秒前
共享精神应助ograss采纳,获得10
7秒前
小飞龙完成签到,获得积分10
7秒前
liwenwen发布了新的文献求助10
7秒前
李爱国应助jing采纳,获得10
7秒前
赘婿应助欧阳正义采纳,获得10
7秒前
米修完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
张鑫发布了新的文献求助10
9秒前
乐乐应助小花生采纳,获得10
10秒前
yx_cheng应助大侦探皮卡丘采纳,获得10
11秒前
12秒前
小鱼完成签到 ,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429