Unsupervised Plot-Scale LAI Phenotyping via UAV-Based Imaging, Modelling, and Machine Learning

叶面积指数 均方误差 多光谱图像 遥感 决定系数 天蓬 数学 随机森林 大气辐射传输码 相关系数 统计 辐射传输 地理 计算机科学 人工智能 农学 物理 生物 考古 量子力学
作者
Qiaomin Chen,Bangyou Zheng,Karine Chenu,Pengcheng Hu,Scott Chapman
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:2022: 1-19 被引量:1
标识
DOI:10.34133/2022/9768253
摘要

High-throughput phenotyping has become the frontier to accelerate breeding through linking genetics to crop growth estimation, which requires accurate estimation of leaf area index (LAI). This study developed a hybrid method to train the random forest regression (RFR) models with synthetic datasets generated by a radiative transfer model to estimate LAI from UAV-based multispectral images. The RFR models were evaluated on both (i) subsets from the synthetic datasets and (ii) observed data from two field experiments (i.e., Exp16, Exp19). Given the parameter ranges and soil reflectance are well calibrated in synthetic training data, RFR models can accurately predict LAI from canopy reflectance captured in field conditions, with systematic overestimation for LAI<2 due to background effect, which can be addressed by applying background correction on original reflectance map based on vegetation-background classification. Overall, RFR models achieved accurate LAI prediction from background-corrected reflectance for Exp16 (correlation coefficient (r) of 0.95, determination coefficient (R2) of 0.90~0.91, root mean squared error (RMSE) of 0.36~0.40 m2 m-2, relative root mean squared error (RRMSE) of 25~28%) and less accurate for Exp19 (r =0.80~0.83, R2 = 0.63~0.69, RMSE of 0.84~0.86 m2 m-2, RRMSE of 30~31%). Additionally, RFR models correctly captured spatiotemporal variation of observed LAI as well as identified variations for different growing stages and treatments in terms of genotypes and management practices (i.e., planting density, irrigation, and fertilization) for two experiments. The developed hybrid method allows rapid, accurate, nondestructive phenotyping of the dynamics of LAI during vegetative growth to facilitate assessments of growth rate including in breeding program assessments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXL关闭了LXL文献求助
刚刚
眇鱼完成签到 ,获得积分10
1秒前
搜集达人应助MIDANN采纳,获得10
1秒前
CC完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
小杜完成签到,获得积分10
3秒前
直率的宛海完成签到,获得积分10
3秒前
kingwhitewing发布了新的文献求助10
3秒前
活泼身影发布了新的文献求助10
4秒前
香蕉觅云应助erhan7采纳,获得10
5秒前
用户5063899完成签到,获得积分10
5秒前
6秒前
飘逸鸵鸟发布了新的文献求助10
6秒前
fsky发布了新的文献求助10
6秒前
火星上黎云完成签到,获得积分10
6秒前
7秒前
7秒前
Spinnin完成签到,获得积分10
8秒前
华仔应助zdnn采纳,获得30
8秒前
bkagyin应助跳跃仙人掌采纳,获得10
9秒前
LL完成签到 ,获得积分10
9秒前
俟天晴完成签到,获得积分10
9秒前
9秒前
hhhhhhh完成签到,获得积分10
10秒前
苏silence发布了新的文献求助10
10秒前
知北完成签到,获得积分10
10秒前
as完成签到,获得积分10
10秒前
11秒前
11秒前
煜清清完成签到 ,获得积分10
11秒前
菜菜发布了新的文献求助20
11秒前
zzz发布了新的文献求助10
11秒前
花仙子完成签到,获得积分20
12秒前
iiing完成签到,获得积分10
12秒前
13秒前
Sen完成签到 ,获得积分10
13秒前
平常亦凝发布了新的文献求助10
13秒前
机智一曲完成签到 ,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582