Unsupervised Plot-Scale LAI Phenotyping via UAV-Based Imaging, Modelling, and Machine Learning

叶面积指数 均方误差 多光谱图像 遥感 决定系数 天蓬 数学 随机森林 大气辐射传输码 相关系数 统计 辐射传输 地理 计算机科学 人工智能 农学 物理 生物 考古 量子力学
作者
Qiaomin Chen,Bangyou Zheng,Karine Chenu,Pengcheng Hu,Scott Chapman
出处
期刊:Plant phenomics [AAAS00]
卷期号:2022: 1-19 被引量:1
标识
DOI:10.34133/2022/9768253
摘要

High-throughput phenotyping has become the frontier to accelerate breeding through linking genetics to crop growth estimation, which requires accurate estimation of leaf area index (LAI). This study developed a hybrid method to train the random forest regression (RFR) models with synthetic datasets generated by a radiative transfer model to estimate LAI from UAV-based multispectral images. The RFR models were evaluated on both (i) subsets from the synthetic datasets and (ii) observed data from two field experiments (i.e., Exp16, Exp19). Given the parameter ranges and soil reflectance are well calibrated in synthetic training data, RFR models can accurately predict LAI from canopy reflectance captured in field conditions, with systematic overestimation for LAI<2 due to background effect, which can be addressed by applying background correction on original reflectance map based on vegetation-background classification. Overall, RFR models achieved accurate LAI prediction from background-corrected reflectance for Exp16 (correlation coefficient (r) of 0.95, determination coefficient (R2) of 0.90~0.91, root mean squared error (RMSE) of 0.36~0.40 m2 m-2, relative root mean squared error (RRMSE) of 25~28%) and less accurate for Exp19 (r =0.80~0.83, R2 = 0.63~0.69, RMSE of 0.84~0.86 m2 m-2, RRMSE of 30~31%). Additionally, RFR models correctly captured spatiotemporal variation of observed LAI as well as identified variations for different growing stages and treatments in terms of genotypes and management practices (i.e., planting density, irrigation, and fertilization) for two experiments. The developed hybrid method allows rapid, accurate, nondestructive phenotyping of the dynamics of LAI during vegetative growth to facilitate assessments of growth rate including in breeding program assessments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助高小猴儿采纳,获得10
1秒前
莱芙完成签到 ,获得积分10
1秒前
科研小白完成签到 ,获得积分10
2秒前
rrgogo发布了新的文献求助10
2秒前
大个应助ly采纳,获得10
3秒前
专一发布了新的文献求助10
3秒前
小赵发布了新的文献求助10
4秒前
6秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
科研白小白应助科研通管家采纳,获得100
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
sutharsons应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
10秒前
rrgogo完成签到,获得积分10
10秒前
11秒前
11秒前
冲冲冲完成签到 ,获得积分10
11秒前
12秒前
大个应助雪菜采纳,获得10
13秒前
pmx发布了新的文献求助10
16秒前
TT发布了新的文献求助10
16秒前
prr发布了新的文献求助10
16秒前
16秒前
WLN发布了新的文献求助10
17秒前
专一完成签到,获得积分10
17秒前
20秒前
ChenChen发布了新的文献求助10
20秒前
pmx完成签到,获得积分10
21秒前
able_scivip关注了科研通微信公众号
22秒前
大模型应助shuaiBsen采纳,获得10
25秒前
26秒前
劲秉应助小赵采纳,获得10
28秒前
嗷嗷完成签到 ,获得积分10
30秒前
30秒前
31秒前
十一完成签到 ,获得积分10
32秒前
顾矜应助火星上盼山采纳,获得10
34秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352392
求助须知:如何正确求助?哪些是违规求助? 2977572
关于积分的说明 8680222
捐赠科研通 2658516
什么是DOI,文献DOI怎么找? 1455863
科研通“疑难数据库(出版商)”最低求助积分说明 674139
邀请新用户注册赠送积分活动 664679