已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparison of skeletal segmentation by deep learning-based and atlas-based segmentation in prostate cancer patients

医学 分割 前列腺癌 骨盆 胸腔 放射科 前列腺 癌症 解剖 内科学 人工智能 计算机科学
作者
Kazuki Motegi,Noriaki Miyaji,Kozo Yamashita,Mitsuru Koizumi,Takashi Terauchi
出处
期刊:Annals of Nuclear Medicine [Springer Nature]
卷期号:36 (9): 834-841
标识
DOI:10.1007/s12149-022-01763-3
摘要

ObjectiveWe aimed to compare the deep learning-based (VSBONE BSI) and atlas-based (BONENAVI) segmentation accuracy that have been developed to measure the bone scan index based on skeletal segmentation.MethodsWe retrospectively conducted bone scans for 383 patients with prostate cancer. These patients were divided into two groups: 208 patients were injected with 99mTc-hydroxymethylene diphosphonate processed by VSBONE BSI, and 175 patients were injected with 99mTc-methylene diphosphonate processed by BONENAVI. Three observers classified the skeletal segmentations as either a “Match” or “Mismatch” in the following regions: the skull, cervical vertebrae, thoracic vertebrae, lumbar vertebrae, pelvis, sacrum, humerus, rib, sternum, clavicle, scapula, and femur. Segmentation error was defined if two or more observers selected “Mismatch” in the same region. We calculated the segmentation error rate according to each administration group and evaluated the presence of hot spots suspected bone metastases in "Mismatch" regions. Multivariate logistic regression analysis was used to determine the association between segmentation error and variables like age, uptake time, total counts, extent of disease, and gamma cameras.ResultsThe regions of “Mismatch” were more common in the long tube bones for VSBONE BSI and in the pelvis and axial skeletons for BONENAVI. Segmentation error was observed in 49 cases (23.6%) with VSBONE BSI and 58 cases (33.1%) with BONENAVI. VSBONE BSI tended that “Mismatch” regions contained hot spots suspected of bone metastases in patients with multiple bone metastases and showed that patients with higher extent of disease (odds ratio = 8.34) were associated with segmentation error in multivariate logistic regression analysis.ConclusionsVSBONE BSI has a potential to be higher segmentation accuracy compared with BONENAVI. However, the segmentation error in VSBONE BSI occurred dependent on bone metastases burden. We need to be careful when evaluating multiple bone metastases using VSBONE BSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然的一凤完成签到 ,获得积分10
刚刚
酷波er应助霸气的小兔子采纳,获得10
1秒前
1秒前
那些年发布了新的文献求助10
1秒前
Jane完成签到,获得积分10
1秒前
善良的安卉完成签到,获得积分10
2秒前
星之芋完成签到,获得积分10
3秒前
123321完成签到 ,获得积分10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得30
5秒前
科目三应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
歪歪吸完成签到,获得积分20
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
5秒前
zxinyi发布了新的文献求助10
7秒前
9秒前
千纸鹤完成签到 ,获得积分10
10秒前
XYZ完成签到 ,获得积分10
11秒前
泡芙完成签到 ,获得积分10
12秒前
12秒前
13秒前
Aaernan完成签到 ,获得积分10
14秒前
15秒前
辞轲完成签到,获得积分10
16秒前
cunzhang发布了新的文献求助10
17秒前
庞mou完成签到 ,获得积分10
17秒前
Doraemon完成签到 ,获得积分10
18秒前
沉默的红牛完成签到 ,获得积分10
18秒前
18秒前
123123完成签到 ,获得积分10
19秒前
19秒前
jiujiu完成签到,获得积分10
19秒前
prl666完成签到,获得积分10
21秒前
BA1完成签到,获得积分10
21秒前
南北发布了新的文献求助50
22秒前
22秒前
科研通AI5应助zxinyi采纳,获得30
24秒前
LMDD发布了新的文献求助10
25秒前
隐形路灯完成签到 ,获得积分10
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477379
求助须知:如何正确求助?哪些是违规求助? 3068812
关于积分的说明 9109727
捐赠科研通 2760297
什么是DOI,文献DOI怎么找? 1514760
邀请新用户注册赠送积分活动 700461
科研通“疑难数据库(出版商)”最低求助积分说明 699566