A Unified Understanding of Deep NLP Models for Text Classification

计算机科学 人工智能 自然语言处理 词(群论) 可视化 集合(抽象数据类型) 度量(数据仓库) 样品(材料) 图层(电子) 相互信息 数据挖掘 语言学 哲学 化学 有机化学 色谱法 程序设计语言
作者
Z. C. Li,Xiting Wang,Weikai Yang,Jing Wu,Zhengyan Zhang,Zhiyuan Liu,Maosong Sun,Hui Zhang,S. Liu
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:28 (12): 4980-4994 被引量:19
标识
DOI:10.1109/tvcg.2022.3184186
摘要

The rapid development of deep natural language processing (NLP) models for text classification has led to an urgent need for a unified understanding of these models proposed individually. Existing methods cannot meet the need for understanding different models in one framework due to the lack of a unified measure for explaining both low-level (e.g., words) and high-level (e.g., phrases) features. We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification. The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample. We model the intra- and inter-word information at each layer measuring the importance of a word to the final prediction as well as the relationships between words, such as the formation of phrases. A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples. Two case studies on classification tasks and comparison between models demonstrate that DeepNLPVis can help users effectively identify potential problems caused by samples and model architectures and then make informed improvements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bjbbh完成签到,获得积分10
1秒前
Skyrin发布了新的文献求助10
1秒前
1秒前
阿蒙完成签到,获得积分10
2秒前
传奇3应助个木采纳,获得10
2秒前
2秒前
ShawnWei完成签到,获得积分10
2秒前
飘逸秋荷完成签到,获得积分10
2秒前
年年完成签到,获得积分10
2秒前
3秒前
3秒前
四季刻歌发布了新的文献求助20
3秒前
乐乐应助努力学习采纳,获得10
3秒前
3秒前
wwt完成签到,获得积分10
3秒前
3秒前
666完成签到,获得积分10
4秒前
Ripples完成签到,获得积分10
4秒前
5秒前
5秒前
赵哈哈完成签到,获得积分10
5秒前
6秒前
7秒前
小柠檬发布了新的文献求助10
7秒前
he发布了新的文献求助10
7秒前
7秒前
CodeCraft应助啵啵采纳,获得10
7秒前
8秒前
otaro发布了新的文献求助30
8秒前
贝利亚发布了新的文献求助10
8秒前
清脆的台灯完成签到,获得积分10
9秒前
范范完成签到 ,获得积分10
9秒前
星辰大海应助starry采纳,获得10
10秒前
科研通AI5应助Xxxnnian采纳,获得30
10秒前
执着的小蘑菇完成签到,获得积分10
11秒前
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
顺顺发布了新的文献求助10
11秒前
上官若男应助科研通管家采纳,获得30
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678