Large Language Models are Zero-Shot Reasoners

弹丸 任务(项目管理) 水准点(测量) 计算机科学 零(语言学) 人工智能 自然语言处理 认知心理学 语言学 心理学 工程类 地理 大地测量学 化学 有机化学 系统工程 哲学
作者
Takeshi Kojima,Shixiang Gu,Machel Reid,Yutaka Matsuo,Yusuke Iwasawa
出处
期刊:Cornell University - arXiv 被引量:804
标识
DOI:10.48550/arxiv.2205.11916
摘要

Pretrained large language models (LLMs) are widely used in many sub-fields of natural language processing (NLP) and generally known as excellent few-shot learners with task-specific exemplars. Notably, chain of thought (CoT) prompting, a recent technique for eliciting complex multi-step reasoning through step-by-step answer examples, achieved the state-of-the-art performances in arithmetics and symbolic reasoning, difficult system-2 tasks that do not follow the standard scaling laws for LLMs. While these successes are often attributed to LLMs' ability for few-shot learning, we show that LLMs are decent zero-shot reasoners by simply adding "Let's think step by step" before each answer. Experimental results demonstrate that our Zero-shot-CoT, using the same single prompt template, significantly outperforms zero-shot LLM performances on diverse benchmark reasoning tasks including arithmetics (MultiArith, GSM8K, AQUA-RAT, SVAMP), symbolic reasoning (Last Letter, Coin Flip), and other logical reasoning tasks (Date Understanding, Tracking Shuffled Objects), without any hand-crafted few-shot examples, e.g. increasing the accuracy on MultiArith from 17.7% to 78.7% and GSM8K from 10.4% to 40.7% with large InstructGPT model (text-davinci-002), as well as similar magnitudes of improvements with another off-the-shelf large model, 540B parameter PaLM. The versatility of this single prompt across very diverse reasoning tasks hints at untapped and understudied fundamental zero-shot capabilities of LLMs, suggesting high-level, multi-task broad cognitive capabilities may be extracted by simple prompting. We hope our work not only serves as the minimal strongest zero-shot baseline for the challenging reasoning benchmarks, but also highlights the importance of carefully exploring and analyzing the enormous zero-shot knowledge hidden inside LLMs before crafting finetuning datasets or few-shot exemplars.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
璃月品茶钟离完成签到,获得积分10
刚刚
Robin95完成签到 ,获得积分10
2秒前
Yang完成签到,获得积分10
3秒前
耳机单蹦发布了新的文献求助10
3秒前
飞鸟完成签到 ,获得积分10
3秒前
飘逸夜白完成签到,获得积分10
3秒前
3秒前
3秒前
852应助dddd采纳,获得30
3秒前
memes发布了新的文献求助10
4秒前
大湖玩家发布了新的文献求助10
4秒前
Orange应助兴奋晋鹏采纳,获得10
5秒前
甜甜芾完成签到,获得积分10
5秒前
jiang发布了新的文献求助10
6秒前
汉堡包应助悲伤汉堡包采纳,获得10
7秒前
7秒前
8秒前
8秒前
10秒前
fanlin发布了新的文献求助10
10秒前
10秒前
memes完成签到,获得积分10
10秒前
liuchang完成签到 ,获得积分10
11秒前
油油完成签到 ,获得积分10
11秒前
David驳回了wanci应助
11秒前
悠悠发布了新的文献求助10
11秒前
萝卜完成签到,获得积分10
11秒前
12秒前
CipherSage应助Lijunjie采纳,获得10
13秒前
阔达的寒松完成签到,获得积分10
13秒前
Efei发布了新的文献求助30
15秒前
平常幼萱完成签到,获得积分10
15秒前
希望天下0贩的0应助Saluzi采纳,获得10
15秒前
dddd发布了新的文献求助30
15秒前
可爱的函函应助竹子采纳,获得30
16秒前
隐形曼青应助纠结不纠结采纳,获得10
16秒前
今后应助耍酷的千愁采纳,获得10
17秒前
大湖玩家完成签到,获得积分10
17秒前
科研通AI6应助秋云山月采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588835
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14789060
捐赠科研通 4626566
什么是DOI,文献DOI怎么找? 2531974
邀请新用户注册赠送积分活动 1500561
关于科研通互助平台的介绍 1468343