Large Language Models are Zero-Shot Reasoners

弹丸 任务(项目管理) 水准点(测量) 计算机科学 零(语言学) 人工智能 自然语言处理 认知心理学 语言学 心理学 工程类 地理 化学 哲学 有机化学 大地测量学 系统工程
作者
Takeshi Kojima,Shixiang Gu,Machel Reid,Yutaka Matsuo,Yusuke Iwasawa
出处
期刊:Cornell University - arXiv 被引量:804
标识
DOI:10.48550/arxiv.2205.11916
摘要

Pretrained large language models (LLMs) are widely used in many sub-fields of natural language processing (NLP) and generally known as excellent few-shot learners with task-specific exemplars. Notably, chain of thought (CoT) prompting, a recent technique for eliciting complex multi-step reasoning through step-by-step answer examples, achieved the state-of-the-art performances in arithmetics and symbolic reasoning, difficult system-2 tasks that do not follow the standard scaling laws for LLMs. While these successes are often attributed to LLMs' ability for few-shot learning, we show that LLMs are decent zero-shot reasoners by simply adding "Let's think step by step" before each answer. Experimental results demonstrate that our Zero-shot-CoT, using the same single prompt template, significantly outperforms zero-shot LLM performances on diverse benchmark reasoning tasks including arithmetics (MultiArith, GSM8K, AQUA-RAT, SVAMP), symbolic reasoning (Last Letter, Coin Flip), and other logical reasoning tasks (Date Understanding, Tracking Shuffled Objects), without any hand-crafted few-shot examples, e.g. increasing the accuracy on MultiArith from 17.7% to 78.7% and GSM8K from 10.4% to 40.7% with large InstructGPT model (text-davinci-002), as well as similar magnitudes of improvements with another off-the-shelf large model, 540B parameter PaLM. The versatility of this single prompt across very diverse reasoning tasks hints at untapped and understudied fundamental zero-shot capabilities of LLMs, suggesting high-level, multi-task broad cognitive capabilities may be extracted by simple prompting. We hope our work not only serves as the minimal strongest zero-shot baseline for the challenging reasoning benchmarks, but also highlights the importance of carefully exploring and analyzing the enormous zero-shot knowledge hidden inside LLMs before crafting finetuning datasets or few-shot exemplars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
w1发布了新的文献求助10
刚刚
1秒前
2秒前
赘婿应助wdlc采纳,获得10
2秒前
天天快乐应助Miracle采纳,获得10
3秒前
3秒前
3秒前
嘟噜完成签到 ,获得积分10
3秒前
4秒前
余额宝是个小沙雕完成签到,获得积分10
5秒前
ding应助cic采纳,获得10
5秒前
5秒前
寻找组织应助小机灵鬼采纳,获得10
6秒前
7秒前
yier发布了新的文献求助10
8秒前
介入小孙完成签到,获得积分10
8秒前
ssf发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
Mek发布了新的文献求助10
10秒前
111发布了新的文献求助10
11秒前
12秒前
赘婿应助HHHH采纳,获得10
13秒前
张紫怡发布了新的文献求助10
13秒前
搜集达人应助潇洒的元风采纳,获得10
13秒前
14秒前
酷波er应助啊薇儿采纳,获得10
15秒前
16秒前
闫什应助不忘初心采纳,获得10
18秒前
星辰大海应助ssf采纳,获得10
18秒前
小蘑菇应助wQ1ng采纳,获得10
18秒前
19秒前
搜集达人应助Lee采纳,获得10
22秒前
22秒前
wuming完成签到,获得积分10
23秒前
23秒前
25秒前
111完成签到,获得积分20
26秒前
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208035
求助须知:如何正确求助?哪些是违规求助? 4385800
关于积分的说明 13658380
捐赠科研通 4244557
什么是DOI,文献DOI怎么找? 2328881
邀请新用户注册赠送积分活动 1326584
关于科研通互助平台的介绍 1278735