类有机物
纳米电子学
神经科学
纳米技术
材料科学
纳米生物技术
生物
纳米颗粒
作者
Paul Le Floch,Qiang Li,Zuwan Lin,Siyuan Zhao,Ren Liu,Kazi Jannatul Tasnim,Han Jiang,Jia Liu
标识
DOI:10.1002/adma.202106829
摘要
Abstract Human induced pluripotent stem cell derived brain organoids have shown great potential for studies of human brain development and neurological disorders. However, quantifying the evolution of the electrical properties of brain organoids during development is currently limited by the measurement techniques, which cannot provide long‐term stable 3D bioelectrical interfaces with developing brain organoids. Here, a cyborg brain organoid platform is reported, in which “tissue‐like” stretchable mesh nanoelectronics are designed to match the mechanical properties of brain organoids and to be folded by the organogenetic process of progenitor or stem cells, distributing stretchable electrode arrays across the 3D organoids. The tissue‐wide integrated stretchable electrode arrays show no interruption to brain organoid development, adapt to the volume and morphological changes during brain organoid organogenesis, and provide long‐term stable electrical contacts with neurons within brain organoids during development. The seamless and noninvasive coupling of electrodes to neurons enables long‐term stable, continuous recording and captures the emergence of single‐cell action potentials from early‐stage brain organoid development.
科研通智能强力驱动
Strongly Powered by AbleSci AI