Robust Image Forgery Detection Against Transmission Over Online Social Networks

计算机科学 稳健性(进化) 有损压缩 噪音(视频) 探测器 人工智能 图像(数学) 证书 计算机安全 计算机工程 数据挖掘 机器学习 理论计算机科学 电信 基因 生物化学 化学
作者
Haiwei Wu,Jiantao Zhou,Jinyu Tian,Jun Liu,Yu Qiao
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 443-456 被引量:45
标识
DOI:10.1109/tifs.2022.3144878
摘要

The increasing abuse of image editing software causes the authenticity of digital images questionable. Meanwhile, the widespread availability of online social networks (OSNs) makes them the dominant channels for transmitting forged images to report fake news, propagate rumors, etc. Unfortunately, various lossy operations, e.g., compression and resizing, adopted by OSNs impose great challenges for implementing the robust image forgery detection. To fight against the OSN-shared forgeries, in this work, a novel robust training scheme is proposed. Firstly, we design a baseline detector, which won the top ranking in a recent certificate forgery detection competition. Then we conduct a thorough analysis of the noise introduced by OSNs, and decouple it into two parts, i.e., predictable noise and unseen noise , which are modelled separately. The former simulates the noise introduced by the disclosed (known) operations of OSNs, while the latter is designed to not only complete the previous one, but also take into account the defects of the detector itself. We further incorporate the modelled noise into a robust training framework, significantly improving the robustness of the image forgery detector. Extensive experimental results are presented to validate the superiority of the proposed scheme compared with several state-of-the-art competitors, especially in the scenarios of detecting OSN-transmitted forgeries. Finally, to promote the future development of the image forgery detection, we build a public forgeries dataset based on four existing datasets through the uploading and downloading of four most popular OSNs. The data and code of this work are available at https://github.com/HighwayWu/ImageForensicsOSN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Mouasin完成签到,获得积分10
1秒前
顺其自然完成签到 ,获得积分10
2秒前
李昕123发布了新的文献求助10
3秒前
xiao双月完成签到,获得积分10
3秒前
zyd应助Touching采纳,获得20
5秒前
Xiaoyan发布了新的文献求助10
5秒前
6秒前
笑点低戾完成签到,获得积分10
7秒前
7秒前
7秒前
hwezhu发布了新的文献求助10
10秒前
呼呼呼发布了新的文献求助10
11秒前
ln1111完成签到,获得积分10
11秒前
黑妖完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
MOS完成签到,获得积分10
14秒前
陈曦完成签到,获得积分10
15秒前
houchengru应助Hang采纳,获得10
15秒前
哭泣嵩发布了新的文献求助10
17秒前
温柔一刀完成签到,获得积分10
18秒前
zzz发布了新的文献求助10
18秒前
研友_Lwb9X8发布了新的文献求助10
19秒前
唐宋元明清完成签到,获得积分0
19秒前
bkagyin应助顺顺欣采纳,获得10
21秒前
blUe完成签到,获得积分10
24秒前
乘风的法袍完成签到,获得积分10
25秒前
25秒前
研友_Lwb9X8完成签到,获得积分20
27秒前
老杜发布了新的文献求助10
30秒前
31秒前
yixiao发布了新的文献求助10
32秒前
花样年华完成签到,获得积分0
33秒前
科研通AI2S应助萝卜丸子采纳,获得10
35秒前
zzz完成签到,获得积分10
35秒前
36秒前
phw2333完成签到,获得积分10
36秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122853
求助须知:如何正确求助?哪些是违规求助? 2773205
关于积分的说明 7716973
捐赠科研通 2428741
什么是DOI,文献DOI怎么找? 1289978
科研通“疑难数据库(出版商)”最低求助积分说明 621678
版权声明 600188