多元自适应回归样条
火星探测计划
花键(机械)
岩土工程
堆
参数统计
回归分析
人工神经网络
多元统计
抗剪强度(土壤)
回归
地质学
非参数回归
数学
工程类
结构工程
计算机科学
土壤科学
统计
机器学习
物理
天文
土壤水分
出处
期刊:Geomechanics and Engineering
[Techno-Press]
日期:2011-12-25
卷期号:3 (4): 285-290
被引量:7
标识
DOI:10.12989/gae.2011.3.4.285
摘要
This article employs Multivariate Adaptive Regression Spline (MARS) for determination of friction capacity of driven piles in clay. MARS is non-parametric adaptive regression procedure. Pile length, pile diameter, effective vertical stress, and undrained shear strength are considered as input of MARS and the output of MARS is friction capacity. The developed MARS gives an equation for determination of $f_s$ of driven piles in clay. The results of the developed MARS have been compared with the Artificial Neural Network. This study shows that the developed MARS is a robust model for prediction of $f_s$ of driven piles in clay.
科研通智能强力驱动
Strongly Powered by AbleSci AI