非谐性
热导率
声子
准粒子
玻尔兹曼方程
计算
物理
凝聚态物理
格子(音乐)
电流(流体)
统计物理学
热传导
经典力学
机械
热力学
数学
超导电性
算法
声学
标识
DOI:10.1103/physrevb.88.144302
摘要
In developing the phonon quasiparticle picture, Peierls discovered that, in a perfect crystal, without anharmonic umklapp ($U$) events, a current-carrying distribution can never relax to a zero-current distribution. Callaway introduced a simplified approximate model version of the Peierls-Boltzmann equation, retaining its ability to deal separately with normal ($N$) and $U$ events. This paper clarifies and improves the Callaway model, and shows that Callaway underestimated the suppression of $N$ processes in relaxing thermal current. The new result should improve computations of thermal conductivity from relaxation-time studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI