Self-Focusing in the Perturbed and Unperturbed Nonlinear Schrödinger Equation in Critical Dimension

奇点 非线性系统 引力奇点 非线性薛定谔方程 绝热过程 物理 自聚焦 数学 数学分析 经典力学 量子力学 激光器 激光束
作者
Gadi Fibich,George Papanicolaou
出处
期刊:Siam Journal on Applied Mathematics [Society for Industrial and Applied Mathematics]
卷期号:60 (1): 183-240 被引量:259
标识
DOI:10.1137/s0036139997322407
摘要

The formation of singularities of self-focusing solutions of the nonlinear Schrödinger equation (NLS) in critical dimension is characterized by a delicate balance between the focusing nonlinearity and diffraction (Laplacian), and is thus very sensitive to small perturbations. In this paper we introduce a systematic perturbation theory for analyzing the effect of additional small terms on self-focusing, in which the perturbed critical NLS is reduced to a simpler system of modulation equations that do not depend on the spatial variables transverse to the beam axis. The modulation equations can be further simplified, depending on whether the perturbed NLS is power conserving or not. We review previous applications of modulation theory and present several new ones that include dispersive saturating nonlinearities, self-focusing with Debye relaxation, the Davey--Stewartson equations, self-focusing in optical fiber arrays, and the effect of randomness. An important and somewhat surprising result is that various small defocusing perturbations lead to a generic form of the modulation equations, whose solutions have slowly decaying focusing-defocusing oscillations. In the special case of the unperturbed critical NLS, modulation theory leads to a new adiabatic law for the rate of blowup which is accurate from the early stages of self-focusing and remains valid up to the singularity point. This adiabatic law preserves the lens transformation property of critical NLS and it leads to an analytic formula for the location of the singularity as a function of the initial pulse power, radial distribution, and focusing angle. The asymptotic limit of this law agrees with the known loglog blowup behavior. However, the loglog behavior is reached only after huge amplifications of the initialamplitude, at which point the physical basis of NLS is in doubt. We also include in this paper a new condition for blowup of solutions in critical NLS and an improved version of the Dawes--Marburger formula for the blowup location of Gaussian pulses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小狸完成签到,获得积分10
刚刚
spinor完成签到,获得积分10
刚刚
A梦完成签到,获得积分20
刚刚
1秒前
1秒前
liourg发布了新的文献求助10
1秒前
1秒前
发酱完成签到,获得积分10
1秒前
CMJ发布了新的文献求助10
1秒前
WWshu发布了新的文献求助30
1秒前
英俊的铭应助abcdefg采纳,获得10
2秒前
zhengzhao发布了新的文献求助10
2秒前
3秒前
东北雨姐发布了新的文献求助10
3秒前
lyw发布了新的文献求助10
3秒前
搜集达人应助涵泽采纳,获得10
4秒前
limeOrca完成签到,获得积分20
4秒前
impala完成签到,获得积分10
5秒前
5秒前
5秒前
伶俐念珍完成签到 ,获得积分10
5秒前
科研通AI2S应助xiang采纳,获得10
6秒前
搞怪梦寒发布了新的文献求助10
6秒前
好困发布了新的文献求助10
6秒前
7秒前
科研通AI2S应助一一一采纳,获得10
7秒前
Tianju发布了新的文献求助10
7秒前
许晓蝶完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
岑广山发布了新的文献求助10
9秒前
丘比特应助CMJ采纳,获得10
10秒前
10秒前
RUINNNO完成签到,获得积分10
10秒前
fffffffq发布了新的文献求助10
10秒前
大美女完成签到,获得积分10
11秒前
11秒前
墨羽完成签到,获得积分20
11秒前
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306