Regulatory T Cells Expressing PPAR-γ Control Inflammation in Obesity

炎症 细胞生物学 肥胖 过氧化物酶体增殖物激活受体 生物 医学 免疫学 受体 内分泌学 遗传学
作者
Masahide Hamaguchi,Shimon Sakaguchi
出处
期刊:Cell Metabolism [Cell Press]
卷期号:16 (1): 4-6 被引量:28
标识
DOI:10.1016/j.cmet.2012.06.007
摘要

A recent study (Cipolletta et al., 2012Cipolletta D. Feuerer M. Li A. Kamei N. Lee J. Shoelson S.E. Benoist C. Mathis D. Nature. 2012; (in press. Published online: May 16, 2012)https://doi.org/10.1038/nature11132Crossref PubMed Scopus (809) Google Scholar) shows that regulatory T (Treg) cells expressing the peroxisome-proliferator- activated receptor (PPAR-γ) are engaged in suppressing adipose tissue inflammation in obesity, suggesting that Treg cells may be a target for treatment and prevention of adipose tissue inflammation and insulin resistance. A recent study (Cipolletta et al., 2012Cipolletta D. Feuerer M. Li A. Kamei N. Lee J. Shoelson S.E. Benoist C. Mathis D. Nature. 2012; (in press. Published online: May 16, 2012)https://doi.org/10.1038/nature11132Crossref PubMed Scopus (809) Google Scholar) shows that regulatory T (Treg) cells expressing the peroxisome-proliferator- activated receptor (PPAR-γ) are engaged in suppressing adipose tissue inflammation in obesity, suggesting that Treg cells may be a target for treatment and prevention of adipose tissue inflammation and insulin resistance. In obesity, enlarged adipocytes accumulating in visceral adipose tissue (VAT) elicit infiltration of macrophages and other immune cells (Feuerer et al., 2009Feuerer M. Herrero L. Cipolletta D. Naaz A. Wong J. Nayer A. Lee J. Goldfine A.B. Benoist C. Shoelson S. et al.Nat. Med. 2009; 15: 930-939Crossref PubMed Scopus (1513) Google Scholar, Winer et al., 2009Winer S. Chan Y. Paltser G. Truong D. Tsui H. Bahrami J. Dorfman R. Wang Y. Zielenski J. Mastronardi F. et al.Nat. Med. 2009; 15: 921-929Crossref PubMed Scopus (1042) Google Scholar, Nishimura et al., 2009Nishimura S. Manabe I. Nagasaki M. Eto K. Yamashita H. Ohsugi M. Otsu M. Hara K. Ueki K. Sugiura S. et al.Nat. Med. 2009; 15: 914-920Crossref PubMed Scopus (1611) Google Scholar, Olefsky and Glass, 2010Olefsky J.M. Glass C.K. Annu. Rev. Physiol. 2010; 72: 219-246Crossref PubMed Scopus (1977) Google Scholar). These cells secrete proinflammatory cytokines and mediate chronic low-grade inflammation in VAT. The inflamed adipose tissue, in turn, may release cytokines, adipokines, fatty acids, and other substances that may affect other organs, such as liver and muscle, leading to systemic insulin resistance. A recent study from Cipolletta and colleagues reveals an important role for VAT-specific natural Treg cells in the suppression of obesity-associated inflammation in VAT and consequently in combatting insulin resistance (Cipolletta et al., 2012Cipolletta D. Feuerer M. Li A. Kamei N. Lee J. Shoelson S.E. Benoist C. Mathis D. Nature. 2012; (in press. Published online: May 16, 2012)https://doi.org/10.1038/nature11132Crossref PubMed Scopus (809) Google Scholar). Naturally occurring Treg cells are a unique CD4+ T cell subpopulation specifically adapted to the suppression of aberrant or excessive immune responses that are harmful to the host (Sakaguchi et al., 2008Sakaguchi S. Yamaguchi T. Nomura T. Ono M. Cell. 2008; 133: 775-787Abstract Full Text Full Text PDF PubMed Scopus (3681) Google Scholar). In physiological conditions, they constitute ∼10% of peripheral CD4+ T cells and are characterized by the expression of the transcription factor Foxp3. The majority of Foxp3+ CD4+ Treg cells are produced by the thymus as a functionally mature and distinct T cell subpopulation, although naive conventional T cells can also differentiate into Foxp3+ Treg cells under certain conditions. The key role of Foxp3+ Treg cells in immune tolerance and homeostasis is best illustrated by Foxp3 gene mutations, which cause Treg cell deficiency or dysfunction, consequently inducing severe autoimmune diseases such as type 1 diabetes mellitus, allergy, and inflammatory bowel disease in humans (Sakaguchi et al., 2008Sakaguchi S. Yamaguchi T. Nomura T. Ono M. Cell. 2008; 133: 775-787Abstract Full Text Full Text PDF PubMed Scopus (3681) Google Scholar). Foxp3+ Treg cells are involved in suppressive control of almost any physiological and pathological immune response and inflammation at any site. Indeed, they exhibit suppressive activity in an inflammation type-dependent manner, controlling specific types of T cells, such as Th1, Th2, and Th17 (Josefowicz et al., 2012Josefowicz S.Z. Lu L.-F. Rudensky A.Y. Annu. Rev. Immunol. 2012; 30: 531-564Crossref PubMed Scopus (1961) Google Scholar) (Figure 1). Foxp3+ Treg cells are abundant in VAT and have a different T cell receptor repertoire compared with Treg cells in other tissues, suggesting that they might be activated via the recognition of a fat tissue-specific antigen (Feuerer et al., 2009Feuerer M. Herrero L. Cipolletta D. Naaz A. Wong J. Nayer A. Lee J. Goldfine A.B. Benoist C. Shoelson S. et al.Nat. Med. 2009; 15: 930-939Crossref PubMed Scopus (1513) Google Scholar). The number of VAT Treg cells is strikingly and specifically reduced in insulin-resistant models of obesity, and their expansion improves insulin sensitivity. Cipolletta and colleagues show that these VAT-resident Foxp3+ Tregs specifically express the peroxisome proliferator-activated receptor (PPAR)γ (Cipolletta et al., 2012Cipolletta D. Feuerer M. Li A. Kamei N. Lee J. Shoelson S.E. Benoist C. Mathis D. Nature. 2012; (in press. Published online: May 16, 2012)https://doi.org/10.1038/nature11132Crossref PubMed Scopus (809) Google Scholar), a nuclear receptor that is required for adipocyte development and is also the target for the insulin-sensitizing drugs thiazolidinediones (TZDs) (Spiegelman, 1998Spiegelman B.M. Diabetes. 1998; 47: 507-514Crossref PubMed Scopus (1640) Google Scholar). PPARγ appears to interact with Foxp3 in VAT-Treg cells. Indeed, ectopic coexpression of Foxp3 and PPARγ in conventional T cells induces a VAT-Treg type gene-expression profile. Specifically, two variants of PPARγ, PPARγ1 and 2, both promote upregulation of VAT-Treg genes, but only PPARγ1 induces repression of VAT-Treg genes. Cipolletta et al., 2012Cipolletta D. Feuerer M. Li A. Kamei N. Lee J. Shoelson S.E. Benoist C. Mathis D. Nature. 2012; (in press. Published online: May 16, 2012)https://doi.org/10.1038/nature11132Crossref PubMed Scopus (809) Google Scholar further investigate the role of PPARγ expression in VAT-Treg by the use of Foxp3-dependent PPARγconditional knockout mice. This Treg cell-specific deletion of PPARγ reduces the number of Treg cells specifically in VAT, resulting in an increase in VAT infiltration by proinflammatory macrophages and monocytes. Interestingly, PPARγ stimulation by pioglitazone, a TZD drug, specifically increases Treg cell numbers in the VAT of obese mice fed a high-fat diet, leading to a concomitant improvement in insulin sensitivity. These results collectively indicate that PPARγ-expressing Foxp3+ Treg cells play a unique role in suppressing VAT inflammation caused by overnutrition, and that TZDs may enhance insulin sensitivity, at least in part, through increasing PPARγ-expressing Foxp3+ Treg cells in VAT. These findings on VAT-resident PPARγ-expressing Treg cells raise several key issues for future research. First, what is the role of PPARγ for VAT Treg cell function? Given that PPARγ is regulated by free fatty acids and their metabolites (Chawla et al., 2001Chawla A. Repa J.J. Evans R.M. Mangelsdorf D.J. Science. 2001; 294: 1866-1870Crossref PubMed Scopus (1685) Google Scholar), Treg cells may sense these substances, as a result, express PPARγ and migrate to the adipose tissue releasing the substances. Alternatively, it is also possible that Treg cells recruited to VAT inflammation sites via chemokine or the recognition of a tissue-specific antigen may express PPARγ in response to local signals. PPARγ is also expressed by macrophages as a negative regulator of intracellular macrophage inflammatory pathways, possibly resulting in their conversion from M1 macrophages, which are proinflammatory, to the anti-inflammatory M2 type (Olefsky and Glass, 2010Olefsky J.M. Glass C.K. Annu. Rev. Physiol. 2010; 72: 219-246Crossref PubMed Scopus (1977) Google Scholar). Thus, PPARγ-expressing Treg cells and macrophages might cooperatively contribute to suppressing obesity-associated VAT inflammation. TZDs may act on both Treg cells and macrophages, restoring insulin sensitivity. Second, how do the Treg cells control inflammation in VAT? They secrete a high amount of IL-10, an anti-inflammatory cytokine, as observed with Foxp3 Treg cells in the intestinal mucosa, where Treg cells appear to be continually activated by intestinal commensal bacteria. It remains to be determined whether Foxp3+ Treg cells primarily control effector T cells (Winer et al., 2009Winer S. Chan Y. Paltser G. Truong D. Tsui H. Bahrami J. Dorfman R. Wang Y. Zielenski J. Mastronardi F. et al.Nat. Med. 2009; 15: 921-929Crossref PubMed Scopus (1042) Google Scholar; Nishimura et al., 2009Nishimura S. Manabe I. Nagasaki M. Eto K. Yamashita H. Ohsugi M. Otsu M. Hara K. Ueki K. Sugiura S. et al.Nat. Med. 2009; 15: 914-920Crossref PubMed Scopus (1611) Google Scholar), which then activate macrophages, or directly control macrophages, at least in part via secretion of IL-10. Augmentation of such suppressive activities of PPARγ-expressing Treg cells may enable better control of VAT inflammation in obesity. Lastly, are Treg cells involved in other chronic low-grade inflammation accompanying tissue damage? In atherosclerosis, for example, Foxp3+ Treg cells present in atheroma lesions have been implicated in suppressing the formation of foam cells from macrophages (Ait-Oufella et al., 2006Ait-Oufella H. Salomon B.L. Potteaux S. Robertson A.-K.L. Gourdy P. Zoll J. Merval R. Esposito B. Cohen J.L. Fisson S. et al.Nat. Med. 2006; 12: 178-180Crossref PubMed Scopus (816) Google Scholar). Pioglitazone has a protective effect on atherosclerosis. The effect of pioglitazone in VAT, causing an increase in VAT Treg cells, suggests that a similar mechanism may underlie the protective effects of the drug in atherosclerosis. Further investigation is required to determine the possible contribution of Foxp3+ Treg cells to the control of other chronic immunometabolic diseases, in which targeting tissue-specific Foxp3+ Treg cells could represent a new approach for treatment and prevention. In conclusion, the finding by Cipolletta et al., 2012Cipolletta D. Feuerer M. Li A. Kamei N. Lee J. Shoelson S.E. Benoist C. Mathis D. Nature. 2012; (in press. Published online: May 16, 2012)https://doi.org/10.1038/nature11132Crossref PubMed Scopus (809) Google Scholar on the presence of VAT-resident PPARγ-expressing Treg cells that control VAT inflammation in obesity provides a new link between immunoregulation and metabolic disease, and may be exploited to devise immunotherapies for immunometabolic diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周大悦完成签到 ,获得积分20
1秒前
鳗鱼衣完成签到 ,获得积分10
1秒前
1秒前
天天快乐应助鄂老三采纳,获得10
2秒前
小羊完成签到 ,获得积分10
2秒前
fuwei完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
原本发布了新的文献求助10
3秒前
炙热南露发布了新的文献求助30
3秒前
无花果应助孤独的心锁采纳,获得10
3秒前
JoeyCho完成签到,获得积分20
5秒前
科研通AI5应助盐植物采纳,获得10
5秒前
感谢znq051210转发科研通微信,获得积分50
6秒前
猪猪hero发布了新的文献求助10
6秒前
7秒前
快乐的胖子应助susu采纳,获得30
9秒前
我是老大应助彩虹糖采纳,获得10
10秒前
科研通AI5应助xxxxc采纳,获得10
11秒前
yuqiu发布了新的文献求助30
11秒前
11秒前
木土土完成签到,获得积分10
11秒前
ding应助攀攀采纳,获得10
11秒前
感谢Shylie转发科研通微信,获得积分50
11秒前
麦益颖完成签到,获得积分10
12秒前
在人中发布了新的文献求助10
12秒前
dandan完成签到 ,获得积分20
14秒前
14秒前
15秒前
16秒前
16秒前
浮游应助三二采纳,获得10
17秒前
17秒前
cantaloupe完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
111完成签到,获得积分10
18秒前
负责惜文完成签到 ,获得积分10
18秒前
科研通AI6应助cyt9999采纳,获得10
18秒前
18秒前
王阳洋发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933690
求助须知:如何正确求助?哪些是违规求助? 4201746
关于积分的说明 13054958
捐赠科研通 3975817
什么是DOI,文献DOI怎么找? 2178602
邀请新用户注册赠送积分活动 1194932
关于科研通互助平台的介绍 1106316