Regulatory T Cells Expressing PPAR-γ Control Inflammation in Obesity

炎症 细胞生物学 肥胖 过氧化物酶体增殖物激活受体 生物 医学 免疫学 受体 内分泌学 遗传学
作者
Masahide Hamaguchi,Shimon Sakaguchi
出处
期刊:Cell Metabolism [Cell Press]
卷期号:16 (1): 4-6 被引量:28
标识
DOI:10.1016/j.cmet.2012.06.007
摘要

A recent study (Cipolletta et al., 2012Cipolletta D. Feuerer M. Li A. Kamei N. Lee J. Shoelson S.E. Benoist C. Mathis D. Nature. 2012; (in press. Published online: May 16, 2012)https://doi.org/10.1038/nature11132Crossref PubMed Scopus (809) Google Scholar) shows that regulatory T (Treg) cells expressing the peroxisome-proliferator- activated receptor (PPAR-γ) are engaged in suppressing adipose tissue inflammation in obesity, suggesting that Treg cells may be a target for treatment and prevention of adipose tissue inflammation and insulin resistance. A recent study (Cipolletta et al., 2012Cipolletta D. Feuerer M. Li A. Kamei N. Lee J. Shoelson S.E. Benoist C. Mathis D. Nature. 2012; (in press. Published online: May 16, 2012)https://doi.org/10.1038/nature11132Crossref PubMed Scopus (809) Google Scholar) shows that regulatory T (Treg) cells expressing the peroxisome-proliferator- activated receptor (PPAR-γ) are engaged in suppressing adipose tissue inflammation in obesity, suggesting that Treg cells may be a target for treatment and prevention of adipose tissue inflammation and insulin resistance. In obesity, enlarged adipocytes accumulating in visceral adipose tissue (VAT) elicit infiltration of macrophages and other immune cells (Feuerer et al., 2009Feuerer M. Herrero L. Cipolletta D. Naaz A. Wong J. Nayer A. Lee J. Goldfine A.B. Benoist C. Shoelson S. et al.Nat. Med. 2009; 15: 930-939Crossref PubMed Scopus (1513) Google Scholar, Winer et al., 2009Winer S. Chan Y. Paltser G. Truong D. Tsui H. Bahrami J. Dorfman R. Wang Y. Zielenski J. Mastronardi F. et al.Nat. Med. 2009; 15: 921-929Crossref PubMed Scopus (1042) Google Scholar, Nishimura et al., 2009Nishimura S. Manabe I. Nagasaki M. Eto K. Yamashita H. Ohsugi M. Otsu M. Hara K. Ueki K. Sugiura S. et al.Nat. Med. 2009; 15: 914-920Crossref PubMed Scopus (1611) Google Scholar, Olefsky and Glass, 2010Olefsky J.M. Glass C.K. Annu. Rev. Physiol. 2010; 72: 219-246Crossref PubMed Scopus (1977) Google Scholar). These cells secrete proinflammatory cytokines and mediate chronic low-grade inflammation in VAT. The inflamed adipose tissue, in turn, may release cytokines, adipokines, fatty acids, and other substances that may affect other organs, such as liver and muscle, leading to systemic insulin resistance. A recent study from Cipolletta and colleagues reveals an important role for VAT-specific natural Treg cells in the suppression of obesity-associated inflammation in VAT and consequently in combatting insulin resistance (Cipolletta et al., 2012Cipolletta D. Feuerer M. Li A. Kamei N. Lee J. Shoelson S.E. Benoist C. Mathis D. Nature. 2012; (in press. Published online: May 16, 2012)https://doi.org/10.1038/nature11132Crossref PubMed Scopus (809) Google Scholar). Naturally occurring Treg cells are a unique CD4+ T cell subpopulation specifically adapted to the suppression of aberrant or excessive immune responses that are harmful to the host (Sakaguchi et al., 2008Sakaguchi S. Yamaguchi T. Nomura T. Ono M. Cell. 2008; 133: 775-787Abstract Full Text Full Text PDF PubMed Scopus (3681) Google Scholar). In physiological conditions, they constitute ∼10% of peripheral CD4+ T cells and are characterized by the expression of the transcription factor Foxp3. The majority of Foxp3+ CD4+ Treg cells are produced by the thymus as a functionally mature and distinct T cell subpopulation, although naive conventional T cells can also differentiate into Foxp3+ Treg cells under certain conditions. The key role of Foxp3+ Treg cells in immune tolerance and homeostasis is best illustrated by Foxp3 gene mutations, which cause Treg cell deficiency or dysfunction, consequently inducing severe autoimmune diseases such as type 1 diabetes mellitus, allergy, and inflammatory bowel disease in humans (Sakaguchi et al., 2008Sakaguchi S. Yamaguchi T. Nomura T. Ono M. Cell. 2008; 133: 775-787Abstract Full Text Full Text PDF PubMed Scopus (3681) Google Scholar). Foxp3+ Treg cells are involved in suppressive control of almost any physiological and pathological immune response and inflammation at any site. Indeed, they exhibit suppressive activity in an inflammation type-dependent manner, controlling specific types of T cells, such as Th1, Th2, and Th17 (Josefowicz et al., 2012Josefowicz S.Z. Lu L.-F. Rudensky A.Y. Annu. Rev. Immunol. 2012; 30: 531-564Crossref PubMed Scopus (1961) Google Scholar) (Figure 1). Foxp3+ Treg cells are abundant in VAT and have a different T cell receptor repertoire compared with Treg cells in other tissues, suggesting that they might be activated via the recognition of a fat tissue-specific antigen (Feuerer et al., 2009Feuerer M. Herrero L. Cipolletta D. Naaz A. Wong J. Nayer A. Lee J. Goldfine A.B. Benoist C. Shoelson S. et al.Nat. Med. 2009; 15: 930-939Crossref PubMed Scopus (1513) Google Scholar). The number of VAT Treg cells is strikingly and specifically reduced in insulin-resistant models of obesity, and their expansion improves insulin sensitivity. Cipolletta and colleagues show that these VAT-resident Foxp3+ Tregs specifically express the peroxisome proliferator-activated receptor (PPAR)γ (Cipolletta et al., 2012Cipolletta D. Feuerer M. Li A. Kamei N. Lee J. Shoelson S.E. Benoist C. Mathis D. Nature. 2012; (in press. Published online: May 16, 2012)https://doi.org/10.1038/nature11132Crossref PubMed Scopus (809) Google Scholar), a nuclear receptor that is required for adipocyte development and is also the target for the insulin-sensitizing drugs thiazolidinediones (TZDs) (Spiegelman, 1998Spiegelman B.M. Diabetes. 1998; 47: 507-514Crossref PubMed Scopus (1640) Google Scholar). PPARγ appears to interact with Foxp3 in VAT-Treg cells. Indeed, ectopic coexpression of Foxp3 and PPARγ in conventional T cells induces a VAT-Treg type gene-expression profile. Specifically, two variants of PPARγ, PPARγ1 and 2, both promote upregulation of VAT-Treg genes, but only PPARγ1 induces repression of VAT-Treg genes. Cipolletta et al., 2012Cipolletta D. Feuerer M. Li A. Kamei N. Lee J. Shoelson S.E. Benoist C. Mathis D. Nature. 2012; (in press. Published online: May 16, 2012)https://doi.org/10.1038/nature11132Crossref PubMed Scopus (809) Google Scholar further investigate the role of PPARγ expression in VAT-Treg by the use of Foxp3-dependent PPARγconditional knockout mice. This Treg cell-specific deletion of PPARγ reduces the number of Treg cells specifically in VAT, resulting in an increase in VAT infiltration by proinflammatory macrophages and monocytes. Interestingly, PPARγ stimulation by pioglitazone, a TZD drug, specifically increases Treg cell numbers in the VAT of obese mice fed a high-fat diet, leading to a concomitant improvement in insulin sensitivity. These results collectively indicate that PPARγ-expressing Foxp3+ Treg cells play a unique role in suppressing VAT inflammation caused by overnutrition, and that TZDs may enhance insulin sensitivity, at least in part, through increasing PPARγ-expressing Foxp3+ Treg cells in VAT. These findings on VAT-resident PPARγ-expressing Treg cells raise several key issues for future research. First, what is the role of PPARγ for VAT Treg cell function? Given that PPARγ is regulated by free fatty acids and their metabolites (Chawla et al., 2001Chawla A. Repa J.J. Evans R.M. Mangelsdorf D.J. Science. 2001; 294: 1866-1870Crossref PubMed Scopus (1685) Google Scholar), Treg cells may sense these substances, as a result, express PPARγ and migrate to the adipose tissue releasing the substances. Alternatively, it is also possible that Treg cells recruited to VAT inflammation sites via chemokine or the recognition of a tissue-specific antigen may express PPARγ in response to local signals. PPARγ is also expressed by macrophages as a negative regulator of intracellular macrophage inflammatory pathways, possibly resulting in their conversion from M1 macrophages, which are proinflammatory, to the anti-inflammatory M2 type (Olefsky and Glass, 2010Olefsky J.M. Glass C.K. Annu. Rev. Physiol. 2010; 72: 219-246Crossref PubMed Scopus (1977) Google Scholar). Thus, PPARγ-expressing Treg cells and macrophages might cooperatively contribute to suppressing obesity-associated VAT inflammation. TZDs may act on both Treg cells and macrophages, restoring insulin sensitivity. Second, how do the Treg cells control inflammation in VAT? They secrete a high amount of IL-10, an anti-inflammatory cytokine, as observed with Foxp3 Treg cells in the intestinal mucosa, where Treg cells appear to be continually activated by intestinal commensal bacteria. It remains to be determined whether Foxp3+ Treg cells primarily control effector T cells (Winer et al., 2009Winer S. Chan Y. Paltser G. Truong D. Tsui H. Bahrami J. Dorfman R. Wang Y. Zielenski J. Mastronardi F. et al.Nat. Med. 2009; 15: 921-929Crossref PubMed Scopus (1042) Google Scholar; Nishimura et al., 2009Nishimura S. Manabe I. Nagasaki M. Eto K. Yamashita H. Ohsugi M. Otsu M. Hara K. Ueki K. Sugiura S. et al.Nat. Med. 2009; 15: 914-920Crossref PubMed Scopus (1611) Google Scholar), which then activate macrophages, or directly control macrophages, at least in part via secretion of IL-10. Augmentation of such suppressive activities of PPARγ-expressing Treg cells may enable better control of VAT inflammation in obesity. Lastly, are Treg cells involved in other chronic low-grade inflammation accompanying tissue damage? In atherosclerosis, for example, Foxp3+ Treg cells present in atheroma lesions have been implicated in suppressing the formation of foam cells from macrophages (Ait-Oufella et al., 2006Ait-Oufella H. Salomon B.L. Potteaux S. Robertson A.-K.L. Gourdy P. Zoll J. Merval R. Esposito B. Cohen J.L. Fisson S. et al.Nat. Med. 2006; 12: 178-180Crossref PubMed Scopus (816) Google Scholar). Pioglitazone has a protective effect on atherosclerosis. The effect of pioglitazone in VAT, causing an increase in VAT Treg cells, suggests that a similar mechanism may underlie the protective effects of the drug in atherosclerosis. Further investigation is required to determine the possible contribution of Foxp3+ Treg cells to the control of other chronic immunometabolic diseases, in which targeting tissue-specific Foxp3+ Treg cells could represent a new approach for treatment and prevention. In conclusion, the finding by Cipolletta et al., 2012Cipolletta D. Feuerer M. Li A. Kamei N. Lee J. Shoelson S.E. Benoist C. Mathis D. Nature. 2012; (in press. Published online: May 16, 2012)https://doi.org/10.1038/nature11132Crossref PubMed Scopus (809) Google Scholar on the presence of VAT-resident PPARγ-expressing Treg cells that control VAT inflammation in obesity provides a new link between immunoregulation and metabolic disease, and may be exploited to devise immunotherapies for immunometabolic diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肆_完成签到 ,获得积分10
刚刚
cwp发布了新的文献求助10
1秒前
加油完成签到 ,获得积分10
2秒前
彗星入梦完成签到 ,获得积分10
2秒前
Panini完成签到 ,获得积分10
3秒前
3秒前
3秒前
薛乎虚完成签到 ,获得积分10
4秒前
chen完成签到,获得积分10
5秒前
222完成签到 ,获得积分10
7秒前
TKTKW发布了新的文献求助30
8秒前
9秒前
swy完成签到,获得积分10
9秒前
Yuuuu完成签到 ,获得积分10
10秒前
自然的小熊猫完成签到 ,获得积分10
10秒前
11秒前
孙燕应助完犊子采纳,获得10
12秒前
浩浩完成签到 ,获得积分10
15秒前
迷路凌柏完成签到 ,获得积分10
16秒前
现代风格完成签到,获得积分10
17秒前
学术菜鸡123完成签到,获得积分10
18秒前
画风湖湘卷完成签到,获得积分10
18秒前
LUNWENREQUEST发布了新的文献求助10
18秒前
wanci应助a1313采纳,获得10
19秒前
Muccio完成签到 ,获得积分10
19秒前
葛藟萦藤完成签到,获得积分10
20秒前
七QI完成签到 ,获得积分10
21秒前
橘生淮南完成签到,获得积分10
24秒前
感性的神级完成签到,获得积分10
24秒前
不想太多完成签到,获得积分10
25秒前
26秒前
cwp完成签到,获得积分20
26秒前
量子星尘发布了新的文献求助10
26秒前
fd163c应助开心人达采纳,获得10
27秒前
jixuzhuixun完成签到 ,获得积分10
28秒前
gzf213完成签到,获得积分10
29秒前
YJ完成签到,获得积分10
29秒前
少吃顿饭并不难完成签到 ,获得积分10
30秒前
31秒前
娅娃儿完成签到 ,获得积分10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008834
求助须知:如何正确求助?哪些是违规求助? 3548485
关于积分的说明 11298899
捐赠科研通 3283114
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220