Methods for Causality Assessment of Adverse Drug Reactions

因果关系(物理学) 因果关系 医学 贝叶斯定理 梅德林 贝叶斯概率 判断 机器学习 人工智能 计算机科学 认识论 哲学 物理 量子力学 政治学 法学
作者
Taofikat B. Agbabiaka,Jelena Savović,Edzard Ernst
出处
期刊:Drug Safety [Springer Nature]
卷期号:31 (1): 21-37 被引量:308
标识
DOI:10.2165/00002018-200831010-00003
摘要

Numerous methods for causality assessment of adverse drug reactions (ADRs) have been published. The aim of this review is to provide an overview of these methods and discuss their strengths and weaknesses. We conducted electronic searches in MEDLINE (via PubMed), EMBASE and the Cochrane databases to find all assessment methods. Thirty-four different methods were found, falling into three broad categories: expert judgement/global introspection, algorithms and probabilistic methods (Bayesian approaches). Expert judgements are individual assessments based on previous knowledge and experience in the field using no standardized tool to arrive at conclusions regarding causality. Algorithms are sets of specific questions with associated scores for calculating the likelihood of a cause-effect relationship. Bayesian approaches use specific findings in a case to transform the prior estimate of probability into a posterior estimate of probability of drug causation. The prior probability is calculated from epidemiological information and the posterior probability combines this background information with the evidence in the individual case to come up with an estimate of causation. As a result of problems of reproducibility and validity, no single method is universally accepted. Different causality categories are adopted in each method, and the categories are assessed using different criteria. Because assessment methods are also not entirely devoid of individual judgements, inter-rater reliability can be low. In conclusion, there is still no method universally accepted for causality assessment of ADRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
Allen发布了新的文献求助10
6秒前
chai完成签到,获得积分10
9秒前
9秒前
Wyu完成签到,获得积分10
10秒前
11111完成签到,获得积分10
10秒前
小王完成签到,获得积分10
11秒前
haowu发布了新的文献求助10
14秒前
爱lx发布了新的文献求助10
16秒前
orixero应助blossom采纳,获得10
18秒前
kaikai完成签到,获得积分10
18秒前
两只鱼完成签到,获得积分10
19秒前
20秒前
jiejie发布了新的文献求助30
22秒前
myelin完成签到,获得积分10
26秒前
KoitoYuu发布了新的文献求助20
26秒前
30秒前
Becky发布了新的文献求助10
33秒前
大龙哥886完成签到,获得积分10
35秒前
星辰大海应助洛水桦采纳,获得10
36秒前
脑洞疼应助英勇小伙采纳,获得10
37秒前
40秒前
42秒前
哥斯拉发布了新的文献求助10
44秒前
脑洞疼应助Becky采纳,获得10
46秒前
46秒前
精明青寒发布了新的文献求助10
47秒前
49秒前
50秒前
KoitoYuu完成签到,获得积分10
53秒前
Becky完成签到,获得积分10
54秒前
55秒前
55秒前
orixero应助科研通管家采纳,获得10
56秒前
JamesPei应助科研通管家采纳,获得10
56秒前
酷波er应助科研通管家采纳,获得10
56秒前
8R60d8应助科研通管家采纳,获得10
56秒前
研友_VZG7GZ应助科研通管家采纳,获得10
57秒前
8R60d8应助科研通管家采纳,获得10
57秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161827
求助须知:如何正确求助?哪些是违规求助? 2813059
关于积分的说明 7898411
捐赠科研通 2472080
什么是DOI,文献DOI怎么找? 1316331
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129