The indirect measurement of tensile strength of material by the grey prediction model GMC(1,n)

极限抗拉强度 材料科学 复合材料 统计 数学
作者
Tzu-Li Tien
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:16 (6): 1322-1328 被引量:101
标识
DOI:10.1088/0957-0233/16/6/013
摘要

A new prediction model presented in this paper is called the grey model with convolution integral, abbreviated as GMC(1, n). Additional n − 1 series can be introduced by the new model GMC(1, n) to improve the accuracy of prediction made by the existing grey model GM(1, 1). Improvements on the existing grey prediction model GM(1, n) are made to a large extent and the messages for a system can be inserted sufficiently. The relationship between input series and output series is constructed sufficiently by GMC(1, n) and high accuracy of indirect measurement or prediction for a dynamic system can be broadly anticipated. The relationship between the tensile strength and Brinell hardness number of a material is very intensive, but a definite explicit or implicit function to describe it does not exist. The property of a material is a grey system. It is more difficult to measure the tensile strength than the Brinell hardness number of a material especially for a higher temperature. The indirect measurement of the tensile strength of a material for a higher temperature can be made by GMC(1, n) with the Brinell hardness number of the material acting as a leading indicator. The results show that the accuracy of the indirect measurement of the tensile strength is satisfactory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Fareth发布了新的文献求助10
1秒前
Air云完成签到,获得积分10
1秒前
PakhoPHD完成签到 ,获得积分10
1秒前
玉麒麟完成签到,获得积分0
2秒前
Angela完成签到,获得积分10
2秒前
希望天下0贩的0应助小吴采纳,获得10
2秒前
2秒前
lilac应助苹果煎饼采纳,获得10
3秒前
大模型应助百宝采纳,获得10
3秒前
怕黑砖头完成签到,获得积分10
4秒前
5秒前
5秒前
花玥鹿完成签到,获得积分10
5秒前
cybbbbbb完成签到,获得积分10
5秒前
咳咳完成签到,获得积分10
5秒前
6秒前
SciGPT应助眼睛大的鑫磊采纳,获得10
6秒前
6秒前
Fareth完成签到,获得积分10
6秒前
领导范儿应助故意的绿竹采纳,获得10
6秒前
6秒前
复杂谷蓝完成签到 ,获得积分10
6秒前
7秒前
迟大猫应助于某人采纳,获得10
7秒前
qingkong发布了新的文献求助10
8秒前
8秒前
8秒前
细腻白柏完成签到,获得积分10
8秒前
8秒前
麦满分完成签到,获得积分10
9秒前
长度2到发布了新的文献求助10
9秒前
Alicia完成签到,获得积分10
10秒前
西瓜大虫完成签到,获得积分10
10秒前
害羞聋五发布了新的文献求助10
11秒前
prosperp完成签到,获得积分0
11秒前
Hongsong完成签到,获得积分20
11秒前
prosperp应助背侧丘脑采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678