材料科学
钠离子电池
电池(电)
阳极
纳米片
化学工程
钠
离子
泥炭
碳纤维
法拉第效率
电极
纳米技术
化学
冶金
有机化学
复合材料
物理
工程类
物理化学
功率(物理)
复合数
生物
量子力学
生态学
作者
Jia Ding,Huanlei Wang,Zhi Li,Alireza Kohandehghan,Kai Cui,Zhanwei Xu,Beniamin Zahiri,Xuehai Tan,Elmira Memarzadeh Lotfabad,Brian C. Olsen,David Mitlin
出处
期刊:ACS Nano
[American Chemical Society]
日期:2013-11-05
卷期号:7 (12): 11004-11015
被引量:853
摘要
We demonstrate that peat moss, a wild plant that covers 3% of the earth's surface, serves as an ideal precursor to create sodium ion battery (NIB) anodes with some of the most attractive electrochemical properties ever reported for carbonaceous materials. By inheriting the unique cellular structure of peat moss leaves, the resultant materials are composed of three-dimensional macroporous interconnected networks of carbon nanosheets (as thin as 60 nm). The peat moss tissue is highly cross-linked, being rich in lignin and hemicellulose, suppressing the nucleation of equilibrium graphite even at 1100 °C. Rather, the carbons form highly ordered pseudographitic arrays with substantially larger intergraphene spacing (0.388 nm) than graphite (c/2 = 0.3354 nm). XRD analysis demonstrates that this allows for significant Na intercalation to occur even below 0.2 V vs Na/Na+. By also incorporating a mild (300 °C) air activation step, we introduce hierarchical micro- and mesoporosity that tremendously improves the high rate performance through facile electrolyte access and further reduced Na ion diffusion distances. The optimized structures (carbonization at 1100 °C + activation) result in a stable cycling capacity of 298 mAh g–1 (after 10 cycles, 50 mA g–1), with ∼150 mAh g–1 of charge accumulating between 0.1 and 0.001 V with negligible voltage hysteresis in that region, nearly 100% cycling Coulombic efficiency, and superb cycling retention and high rate capacity (255 mAh g–1 at the 210th cycle, stable capacity of 203 mAh g–1 at 500 mA g–1).
科研通智能强力驱动
Strongly Powered by AbleSci AI