Diffusion LMS Over Multitask Networks

计算机科学 扩散 信号处理 电信 物理 雷达 热力学
作者
Jie Chen,Cédric Richard,Ali H. Sayed
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:63 (11): 2733-2748 被引量:224
标识
DOI:10.1109/tsp.2015.2412918
摘要

The diffusion LMS algorithm has been extensively studied in recent years. This efficient strategy allows to address distributed optimization problems over networks in the case where nodes have to collaboratively estimate a single parameter vector. Problems of this type are referred to as single-task problems. Nevertheless, there are several problems in practice that are multitask-oriented in the sense that the optimum parameter vector may not be the same for every node. This brings up the issue of studying the performance of the diffusion LMS algorithm when it is run, either intentionally or unintentionally, in a multitask environment. In this paper, we conduct a theoretical analysis on the stochastic behavior of diffusion LMS in the case where the so-called single-task hypothesis is violated. We explain under what conditions diffusion LMS continues to deliver performance superior to non-cooperative strategies in the multitask environment. When the conditions are violated, we explain how to endow the nodes with the ability to cluster with other similar nodes to remove bias. We propose an unsupervised clustering strategy that allows each node to select, via adaptive adjustments of combination weights, the neighboring nodes with which it can collaborate to estimate a common parameter vector. Simulations are presented to illustrate the theoretical results, and to demonstrate the efficiency of the proposed clustering strategy. The framework is applied to a useful problem involving a multi-target tracking task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
刚刚
KKK完成签到,获得积分10
刚刚
今后应助科研通管家采纳,获得10
刚刚
fangzhang发布了新的文献求助10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
刚刚
完美世界应助科研通管家采纳,获得30
刚刚
1秒前
wop111应助科研通管家采纳,获得20
1秒前
量子星尘发布了新的文献求助10
1秒前
领导范儿应助哈哈采纳,获得10
1秒前
1秒前
科研通AI6应助tt采纳,获得10
1秒前
Bethan完成签到,获得积分10
2秒前
2秒前
行云流水发布了新的文献求助10
2秒前
脑洞疼应助Luisa采纳,获得10
2秒前
FashionBoy应助nixiaozhi采纳,获得10
2秒前
3秒前
霖总发布了新的文献求助10
3秒前
4秒前
4秒前
dr.du完成签到 ,获得积分10
4秒前
归尘发布了新的文献求助10
4秒前
lily发布了新的文献求助10
5秒前
5秒前
科研通AI6应助feixue采纳,获得10
6秒前
终梦发布了新的文献求助10
6秒前
hardtime完成签到,获得积分20
6秒前
kkk完成签到,获得积分10
6秒前
可乐喝九瓶完成签到,获得积分10
7秒前
泡芙发布了新的文献求助10
7秒前
科研战士完成签到,获得积分10
7秒前
华仔应助GongFei采纳,获得10
8秒前
8秒前
BuMAMAHAHA完成签到,获得积分10
8秒前
科研通AI5应助Queena采纳,获得10
9秒前
9秒前
kuaikuai发布了新的文献求助30
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884272
求助须知:如何正确求助?哪些是违规求助? 4169600
关于积分的说明 12938186
捐赠科研通 3930023
什么是DOI,文献DOI怎么找? 2156406
邀请新用户注册赠送积分活动 1174785
关于科研通互助平台的介绍 1079562