Diffusion LMS Over Multitask Networks

计算机科学 扩散 信号处理 电信 物理 雷达 热力学
作者
Jie Chen,Cédric Richard,Ali H. Sayed
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:63 (11): 2733-2748 被引量:224
标识
DOI:10.1109/tsp.2015.2412918
摘要

The diffusion LMS algorithm has been extensively studied in recent years. This efficient strategy allows to address distributed optimization problems over networks in the case where nodes have to collaboratively estimate a single parameter vector. Problems of this type are referred to as single-task problems. Nevertheless, there are several problems in practice that are multitask-oriented in the sense that the optimum parameter vector may not be the same for every node. This brings up the issue of studying the performance of the diffusion LMS algorithm when it is run, either intentionally or unintentionally, in a multitask environment. In this paper, we conduct a theoretical analysis on the stochastic behavior of diffusion LMS in the case where the so-called single-task hypothesis is violated. We explain under what conditions diffusion LMS continues to deliver performance superior to non-cooperative strategies in the multitask environment. When the conditions are violated, we explain how to endow the nodes with the ability to cluster with other similar nodes to remove bias. We propose an unsupervised clustering strategy that allows each node to select, via adaptive adjustments of combination weights, the neighboring nodes with which it can collaborate to estimate a common parameter vector. Simulations are presented to illustrate the theoretical results, and to demonstrate the efficiency of the proposed clustering strategy. The framework is applied to a useful problem involving a multi-target tracking task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行走的猫发布了新的文献求助10
刚刚
1秒前
李健的粉丝团团长应助yucj采纳,获得10
2秒前
renjiancihua完成签到,获得积分10
2秒前
dl应助张真肇采纳,获得10
3秒前
5秒前
7秒前
retosure发布了新的文献求助10
7秒前
7秒前
wy.he完成签到,获得积分0
7秒前
7秒前
linmo完成签到,获得积分10
7秒前
10秒前
10秒前
linmo发布了新的文献求助10
12秒前
ding完成签到,获得积分10
12秒前
炙热的无心完成签到,获得积分10
13秒前
科研通AI2S应助搞怪的之云采纳,获得10
14秒前
米饭辣椒完成签到,获得积分10
14秒前
slb1319完成签到,获得积分10
15秒前
Jacky完成签到 ,获得积分20
15秒前
齐齐发布了新的文献求助10
15秒前
yanxuhuan发布了新的文献求助10
16秒前
神勇的秋珊完成签到,获得积分20
17秒前
17秒前
andylue完成签到,获得积分10
17秒前
轻松的鸿煊完成签到 ,获得积分10
18秒前
Evander完成签到,获得积分10
18秒前
19秒前
乐乐应助retosure采纳,获得10
20秒前
干净的海云完成签到 ,获得积分10
20秒前
雨齐发布了新的文献求助10
22秒前
珍珠发布了新的文献求助10
22秒前
归于晏完成签到,获得积分10
22秒前
JamesPei应助萱萱采纳,获得10
23秒前
25秒前
Damian完成签到,获得积分10
25秒前
hangzhen发布了新的文献求助10
26秒前
852应助wangting采纳,获得10
27秒前
orixero应助耍酷延恶采纳,获得10
28秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379616
求助须知:如何正确求助?哪些是违规求助? 4503889
关于积分的说明 14016933
捐赠科研通 4412719
什么是DOI,文献DOI怎么找? 2423913
邀请新用户注册赠送积分活动 1416795
关于科研通互助平台的介绍 1394372