超极化率
化学
发色团
卟啉
激发态
接受者
分子
共轭体系
光化学
溶剂变色
基态
计算化学
原子物理学
有机化学
极化率
物理
凝聚态物理
聚合物
作者
Satyam Priyadarshy,Michael J. Therien,David N. Beratan
摘要
We describe the theoretical basis for the exceptionally large molecular first hyperpolarizabilities inherent to (5,15-diethynylporphinato)metal-bridged donor−acceptor (D−A) molecules. β values relevant for hyper-Rayleigh experiments are calculated at 1.064 and 0.830 μm for a complex with such a structure, [5-((4'-(dimethylamino)phenyl)ethynyl)-15-((4''-nitrophenyl)ethynyl)-10,20-diphenylporphinato]zinc(II), and are 472 × 10-30 and 8152 × 10-30 cm5/esu, respectively. The values are 1 order of magnitude larger than that calculated for any other porphyrin bridged donor−acceptor chromophore studied to date. The considerably enhanced hyperpolarizability arises from the significant excited-state electronic asymmetry manifest in such structures (derived from the strong bridge-mediated D−A coupling enabled by the largely porphyrin-based excited state) and the large bridge-centered oscillator strength in this new class of D−bridge−A molecules. Our analysis of NLO properties (based upon INDO/SCI calculations within the sum over states formalism) shows a sensitivity to the degree of cumulenic character in the ground state. Calculations on structurally related multiporphyrin systems suggest candidate chromophores with further enhanced optical nonlinearities.
科研通智能强力驱动
Strongly Powered by AbleSci AI