克拉斯
癌症研究
激酶
磷酸化
时尚
癌症
酪蛋白激酶1
化学
MAPK/ERK通路
信号转导
Wnt信号通路
生物
分子生物学
细胞生物学
蛋白激酶A
细胞凋亡
生物化学
结直肠癌
半胱氨酸蛋白酶
程序性细胞死亡
遗传学
作者
Brittany M. Bowman,Katrina A. Sebolt,Benjamin A. Hoff,Jennifer L. Boes,Danette L. Daniels,Kevin Heist,Craig J. Galbán,Rajiv M. Patel,Jianke Zhang,David G. Beer,Brian D. Ross,Alnawaz Rehemtulla,Stefanie Galbán
出处
期刊:Science Signaling
[American Association for the Advancement of Science (AAAS)]
日期:2015-01-27
卷期号:8 (361)
被引量:43
标识
DOI:10.1126/scisignal.2005607
摘要
Genomic amplification of the gene encoding and phosphorylation of the protein FADD (Fas-associated death domain) is associated with poor clinical outcome in lung cancer and in head and neck cancer. Activating mutations in the guanosine triphosphatase RAS promotes cell proliferation in various cancers. Increased abundance of phosphorylated FADD in patient-derived tumor samples predicts poor clinical outcome. Using immunohistochemistry analysis and in vivo imaging of conditional mouse models of KRAS(G12D)-driven lung cancer, we found that the deletion of the gene encoding FADD suppressed tumor growth, reduced the proliferative index of cells, and decreased the activation of downstream effectors of the RAS-MAPK (mitogen-activated protein kinase) pathway that promote the cell cycle, including retinoblastoma (RB) and cyclin D1. In mouse embryonic fibroblasts, the induction of mitosis upon activation of KRAS required FADD and the phosphorylation of FADD by CK1α (casein kinase 1α). Deleting the gene encoding CK1α in KRAS mutant mice abrogated the phosphorylation of FADD and suppressed lung cancer development. Phosphorylated FADD was most abundant during the G2/M phase of the cell cycle, and mass spectrometry revealed that phosphorylated FADD interacted with kinases that mediate the G2/M transition, including PLK1 (Polo-like kinase 1), AURKA (Aurora kinase A), and BUB1 (budding uninhibited by benzimidazoles 1). This interaction was decreased in cells treated with a CKI-7, a CK1α inhibitor. Therefore, as the kinase that phosphorylates FADD downstream of RAS, CK1α may be a therapeutic target for KRAS-driven lung cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI