劈形算符
欧米茄
数学
有界函数
吸引子
领域(数学分析)
数学分析
分形
强迫(数学)
非线性系统
Hausdorff测度
豪斯多夫维数
数学物理
物理
量子力学
作者
Marcio A. Jorge Silva,Vando Narciso
出处
期刊:Differential and Integral Equations
日期:2014-09-01
卷期号:27 (9/10)
被引量:21
标识
DOI:10.57262/die/1404230051
摘要
This paper is devoted to the long-time behavior of solutions for a class of plate equations with nonlocal weak damping $$ u_{tt} + \Delta^2 u + g(u) + M \Big (\int_{\Omega}|\nabla u|^2 dx \Big )u_t =f\quad \mbox{in} \quad \Omega\times\mathbb{R}^{+}, $$ where $\Omega$ is a bounded domain of $\mathbb{R}^N$. Under suitable conditions on the nonlinear forcing term $g(u)$ and Kirchhoff damping coefficient $M (\int|\nabla u|^2 ),$ the existence of a global attractor with finite Hausdorff and fractal dimensions is proved.
科研通智能强力驱动
Strongly Powered by AbleSci AI