A prospect theory-based interval dynamic reference point method for emergency decision making

托普西斯 前景理论 计算机科学 区间(图论) 运筹学 偏爱 风险分析(工程) 光学(聚焦) 领域(数学) 点(几何) 理想(伦理) 决策支持系统 管理科学 人工智能 数学 统计 几何学 财务 组合数学 经济 医学 哲学 物理 认识论 纯数学 光学
作者
Liang Wang,Zixin Zhang,Ying‐Ming Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:42 (23): 9379-9388 被引量:108
标识
DOI:10.1016/j.eswa.2015.07.056
摘要

Urgent or critical situations, such as terrorist attacks and natural disasters, often require decision makers (DMs) to take crucial decisions. Emergency decision making (EDM) problems have become a very active research field in recent years. The existing studies focus mainly on the information inadequacy or incomplete information in emergencies, and selecting ideal emergency alternatives, neglecting the psychological behavior of DMs under emergencies. Few studies consider a DM's psychological behavior, although there is some focus on the dynamic features of emergency events and limited DM judgments under risk and uncertainty. Motivated by such problems, this study proposes a prospect theory-based interval dynamic reference point method for EDM. The technique for order preference by similarity to ideal solution (TOPSIS) method is a popular decision technique, as decision makers are always bounded rational under risk and uncertainty and their psychological behavior plays an important role in EDM. However, the existing TOPSIS methods are seldom concerned with this issue. Based on such a problem, this study proposes a TOPSIS method with an interval reference point, which considers the DM's psychological behavior. Two examples are presented to illustrate the feasibility and validity of the proposed methods for solving EDM problems in the real world. Based on the final rankings of alternatives in the examples, each of our methods validates the other and matches the actual EDM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
习习应助zhu96114748采纳,获得10
刚刚
英姑应助韭菜盒子采纳,获得10
刚刚
jbzmm完成签到 ,获得积分10
刚刚
36456657应助虚安采纳,获得10
1秒前
张真狗完成签到,获得积分10
1秒前
zz完成签到,获得积分10
1秒前
深情安青应助xxx采纳,获得10
1秒前
1秒前
yqf完成签到,获得积分10
2秒前
MADKAI发布了新的文献求助10
2秒前
乐乐应助燕尔蓝采纳,获得10
3秒前
JamesPei应助柔弱煎饼采纳,获得30
3秒前
习习应助甜甜的向卉采纳,获得10
3秒前
xunxunmimi发布了新的文献求助10
3秒前
3秒前
温暖哈密瓜完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
聆听雨完成签到,获得积分10
5秒前
Ymj完成签到,获得积分10
5秒前
怡然若雁完成签到,获得积分10
5秒前
5秒前
坚强亦丝应助游大达采纳,获得10
6秒前
@小小搬砖瑞完成签到,获得积分10
6秒前
怡然若雁发布了新的文献求助10
8秒前
coc关注了科研通微信公众号
8秒前
双双完成签到,获得积分10
8秒前
瑶625发布了新的文献求助10
8秒前
Strike完成签到,获得积分10
9秒前
调皮纸飞机完成签到,获得积分20
9秒前
董小李完成签到,获得积分10
9秒前
9秒前
研友_8yN60L完成签到,获得积分10
10秒前
zhanzhanzhan发布了新的文献求助10
10秒前
科研通AI5应助自爱悠然采纳,获得10
10秒前
10秒前
Accept应助胡枝子采纳,获得30
10秒前
Strike发布了新的文献求助10
11秒前
Rsoup完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740