超平面
感知器
可分离空间
算法
模糊集
数学
模糊逻辑
模糊分类
趋同(经济学)
人工智能
模糊集运算
多层感知器
模式识别(心理学)
计算机科学
人工神经网络
经济增长
数学分析
经济
几何学
作者
James M. Keller,Douglas J. Hunt
标识
DOI:10.1109/tpami.1985.4767725
摘要
The perceptron algorithm, one of the class of gradient descent techniques, has been widely used in pattern recognition to determine linear decision boundaries. While this algorithm is guaranteed to converge to a separating hyperplane if the data are linearly separable, it exhibits erratic behavior if the data are not linearly separable. Fuzzy set theory is introduced into the perceptron algorithm to produce a ``fuzzy algorithm'' which ameliorates the convergence problem in the nonseparable case. It is shown that the fuzzy perceptron, like its crisp counterpart, converges in the separable case. A method of generating membership functions is developed, and experimental results comparing the crisp to the fuzzy perceptron are presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI