亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Monaural Sound Source Separation by Nonnegative Matrix Factorization With Temporal Continuity and Sparseness Criteria

光谱图 非负矩阵分解 源分离 单声道 数学 算法 子空间拓扑 独立成分分析 计算机科学 乘法函数 基质(化学分析) 期限(时间) 语音识别 模式识别(心理学) 矩阵分解 人工智能 特征向量 数学分析 物理 复合材料 材料科学 量子力学
作者
Tuomas Virtanen
出处
期刊:IEEE Transactions on Audio, Speech, and Language Processing [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1066-1074 被引量:920
标识
DOI:10.1109/tasl.2006.885253
摘要

An unsupervised learning algorithm for the separation of sound sources in one-channel music signals is presented. The algorithm is based on factorizing the magnitude spectrogram of an input signal into a sum of components, each of which has a fixed magnitude spectrum and a time-varying gain. Each sound source, in turn, is modeled as a sum of one or more components. The parameters of the components are estimated by minimizing the reconstruction error between the input spectrogram and the model, while restricting the component spectrograms to be nonnegative and favoring components whose gains are slowly varying and sparse. Temporal continuity is favored by using a cost term which is the sum of squared differences between the gains in adjacent frames, and sparseness is favored by penalizing nonzero gains. The proposed iterative estimation algorithm is initialized with random values, and the gains and the spectra are then alternatively updated using multiplicative update rules until the values converge. Simulation experiments were carried out using generated mixtures of pitched musical instrument samples and drum sounds. The performance of the proposed method was compared with independent subspace analysis and basic nonnegative matrix factorization, which are based on the same linear model. According to these simulations, the proposed method enables a better separation quality than the previous algorithms. Especially, the temporal continuity criterion improved the detection of pitched musical sounds. The sparseness criterion did not produce significant improvements
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助andrele采纳,获得10
10秒前
高大的蜡烛完成签到,获得积分20
17秒前
18秒前
22秒前
balabala完成签到,获得积分20
24秒前
24秒前
24秒前
kk发布了新的文献求助10
30秒前
balabala关注了科研通微信公众号
32秒前
37秒前
himes发布了新的文献求助10
40秒前
SciGPT应助kk采纳,获得10
41秒前
SciGPT应助himes采纳,获得10
47秒前
cqhecq完成签到,获得积分10
53秒前
kk完成签到,获得积分10
59秒前
绿竹发布了新的文献求助20
1分钟前
南冥完成签到 ,获得积分10
1分钟前
311完成签到 ,获得积分10
1分钟前
无花果应助浅弋采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
yu完成签到 ,获得积分10
1分钟前
zommen完成签到 ,获得积分10
2分钟前
AlwaysKim完成签到,获得积分10
2分钟前
2分钟前
浅弋发布了新的文献求助10
2分钟前
浅弋完成签到,获得积分10
2分钟前
himes完成签到,获得积分10
2分钟前
2分钟前
2分钟前
himes发布了新的文献求助10
2分钟前
AlwaysKim发布了新的文献求助10
2分钟前
默默雪旋完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
zjc发布了新的文献求助10
3分钟前
zjc完成签到,获得积分20
3分钟前
栀子红了完成签到 ,获得积分10
3分钟前
AliEmbark完成签到,获得积分20
3分钟前
3分钟前
会飞的流氓兔完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503056
关于积分的说明 11111228
捐赠科研通 3234093
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264