Receptor Modeling of Ambient Particulate Matter Data Using Positive Matrix Factorization: Review of Existing Methods

因式分解 微粒 文档 数据挖掘 环境科学 计算机科学 化学 算法 有机化学 程序设计语言
作者
Adam Reff,Shelly I Eberly,Prakash V. Bhave
出处
期刊:Journal of the Air & Waste Management Association [Informa]
卷期号:57 (2): 146-154 被引量:502
标识
DOI:10.1080/10473289.2007.10465319
摘要

Methods for apportioning sources of ambient particulate matter (PM) using the positive matrix factorization (PMF) algorithm are reviewed. Numerous procedural decisions must be made and algorithmic parameters selected when analyzing PM data with PMF. However, few publications document enough of these details for readers to evaluate, reproduce, or compare results between different studies. For example, few studies document why some species were used and others not used in the modeling, how the number of factors was selected, or how much uncertainty exists in the solutions. More thorough documentation will aid the development of standard protocols for analyzing PM data with PMF and will reveal more clearly where research is needed to help future analysts select from the various possible procedures and parameters available in PMF. For example, research likely is needed to determine optimal approaches for handling data below detection limits, ways to apportion PM mass among sources identified by PMF, and ways to estimate uncertainties in the solution. The review closes with recommendations for documenting the methodological details of future PMF analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thk1234完成签到,获得积分10
刚刚
1秒前
aura发布了新的文献求助10
1秒前
小刘应助cookie采纳,获得10
2秒前
3秒前
陌上花开完成签到,获得积分0
4秒前
4秒前
嘟嘟发布了新的文献求助10
4秒前
4秒前
5秒前
研一小刘完成签到,获得积分10
5秒前
善良的路灯完成签到,获得积分10
6秒前
uu发布了新的文献求助10
6秒前
7秒前
易烊千玺发布了新的文献求助10
8秒前
请叫我风吹麦浪应助HJJHJH采纳,获得20
8秒前
ZBN发布了新的文献求助10
8秒前
8秒前
善学以致用应助123采纳,获得10
10秒前
10秒前
11秒前
AFEUWOS01发布了新的文献求助30
11秒前
星辰大海应助Left采纳,获得10
11秒前
sansan发布了新的文献求助10
12秒前
哈哈哈完成签到,获得积分10
12秒前
科研通AI5应助DTT采纳,获得10
13秒前
13秒前
14秒前
坚强不言完成签到,获得积分10
14秒前
14秒前
小天应助善良的路灯采纳,获得30
15秒前
15秒前
脑洞疼应助yigu采纳,获得10
16秒前
16秒前
Hu完成签到 ,获得积分10
18秒前
liuyan432完成签到,获得积分10
18秒前
cc完成签到,获得积分10
18秒前
易烊千玺完成签到,获得积分20
18秒前
哒哒哒哒完成签到,获得积分10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794