Assessment of Urban Ecosystem Resilience through Hybrid Social–Physical Complex Networks

弹性(材料科学) 背景(考古学) 城市复原力 过程(计算) 计算机科学 危害 城市规划 风险分析(工程) 环境资源管理 环境规划 业务 土木工程 地理 工程类 环境科学 化学 物理 考古 有机化学 热力学 操作系统
作者
Massimo Cavallaro,Domenico Asprone,Vito Latora,Gaetano Manfredi,Vincenzo Nicosia
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:29 (8): 608-625 被引量:122
标识
DOI:10.1111/mice.12080
摘要

Abstract One of the most important tasks of urban and hazard planning is to mitigate the damages and minimize the costs of the recovery process after catastrophic events. In this context, the capability of urban systems and communities to recover from disasters is referred to as resilience. Despite the problem of resilience quantification having received a lot of attention, a mathematical definition of the resilience of an urban community, which takes into account the social aspects of an urban environment, has not yet been identified. In this article, we provide and test a methodology for the assessment of urban resilience to catastrophic events which aims at bridging the gap between the engineering and the ecosystem approaches to resilience. We propose to model an urban system by means of different hybrid social–physical complex networks, obtained by enriching the urban street network with additional information about the social and physical constituents of a city, namely citizens, residential buildings, and services. Then, we introduce a class of efficiency measures on these hybrid networks, inspired by the definition of global efficiency given in complex network theory, and we show that these measures can be effectively used to quantify the resilience of an urban system, by comparing their respective values before and after a catastrophic event and during the reconstruction process. As a case study, we consider simulated earthquakes in the city of Acerra, Italy, and we use these efficiency measures to compare the ability of different reconstruction strategies in restoring the original performance of the urban system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
雪白易烟完成签到,获得积分10
刚刚
1秒前
南山关注了科研通微信公众号
1秒前
英俊的铭应助bu采纳,获得10
2秒前
2秒前
雪白易烟发布了新的文献求助10
3秒前
Kimi发布了新的文献求助10
4秒前
苗子雬完成签到,获得积分10
4秒前
奶茶麻辣烫完成签到,获得积分10
4秒前
5秒前
早上起不来关注了科研通微信公众号
6秒前
吕lvlvlvlvlv发布了新的文献求助50
6秒前
7秒前
王来敏完成签到,获得积分10
7秒前
光亮安青完成签到,获得积分10
8秒前
mmm完成签到,获得积分10
8秒前
慕青应助周游采纳,获得10
9秒前
ding应助wrb采纳,获得10
10秒前
11秒前
11秒前
14秒前
15秒前
沉静秋蝶完成签到,获得积分10
15秒前
Kimi完成签到,获得积分10
15秒前
Nicole完成签到 ,获得积分10
16秒前
17秒前
17秒前
科研通AI2S应助linyufeifei采纳,获得10
17秒前
17秒前
杳鸢应助飞快的尔容采纳,获得30
17秒前
深情安青应助ikun采纳,获得10
18秒前
jz完成签到,获得积分10
18秒前
小二郎应助俏皮绿蓉采纳,获得10
19秒前
20秒前
21秒前
阿正发布了新的文献求助10
21秒前
JamesPei应助科研狒狒采纳,获得10
21秒前
糖糖发布了新的文献求助10
22秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222621
求助须知:如何正确求助?哪些是违规求助? 2871361
关于积分的说明 8174931
捐赠科研通 2538292
什么是DOI,文献DOI怎么找? 1370440
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619608