颗粒过滤器
集合卡尔曼滤波器
控制理论(社会学)
卡尔曼滤波器
无味变换
辅助粒子过滤器
截断(统计)
扩展卡尔曼滤波器
非线性系统
非线性滤波器
概率密度函数
滤波器(信号处理)
计算机科学
约束(计算机辅助设计)
核自适应滤波器
数学优化
数学
滤波器设计
物理
人工智能
统计
几何学
控制(管理)
量子力学
机器学习
计算机视觉
作者
Ondfej Straka,Jindřich Duník,Miroslav Ŝimandl
标识
DOI:10.1109/acc.2011.5991296
摘要
The problem of state estimation of nonlinear stochastic dynamic systems with nonlinear inequality constraints is treated. The paper focuses on a particle filtering approach, which provides an estimate of the state in the form of a probability density function. A new computationally efficient particle filter for the constrained estimation problem is proposed. The importance function of the particle filter is generated by the unscented Kalman filter that is supplemented with a designed truncation technique to accommodate the constraint. The proposed filter is illustrated in a numerical example.
科研通智能强力驱动
Strongly Powered by AbleSci AI