期刊:Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations日期:2001-06-04被引量:8
标识
DOI:10.1115/2001-gt-0067
摘要
Measurements of NOx and CO in methane-fired, lean-premixed, high-pressure jet-stirred reactors (HP-JSRs) independently obtained by Rutar [1] and Rutar et al. [2] and by Bengtsson [3] and Bengtsson et al. [4] are well predicted assuming simple chemical reactor models and the GRI 3.0 chemical kinetic mechanism. The single-jet HP-JSR of Rutar [1] and Rutar et al. [2] is well modeled for NOx and CO assuming a single PSR for Damköhler number below 0.15. Under these conditions, the estimates of flame thickness indicate the flame zone, that is, the region of rapid oxidation and large concentrations of free radicals, fully fills the HP-JSR. For Damköhler number above 0.15, that is, for longer residence times, the NOx and CO are well modeled assuming two PSRs in series, representing a small flame zone followed by a large post-flame zone. The multi-jet reactor of Bengtsson [3] and Bengtsson et al. [4] is well modeled assuming a large PSR (over 88% of the reactor volume) followed by a short PFR, which accounts for the exit region of the HP-JSR and the short section of exhaust prior to the sampling point. The Damköhler number is estimated between 0.01 and 0.03. Our modeling shows the NOx formation pathway contributions. Although all pathways, including Zeldovich (under the influence of super-equilibrium O-atom), nitrous oxide, Fenimore prompt, and NNH, contribute to the total NOx predicted, of special note are the following findings: 1) NOx formed by the nitrous oxide pathway is significant throughout the conditions studied; and 2) NOx formed by the Fenimore prompt pathway is significant when the fuel-air equivalence ratio is greater than about 0.7 (as might occur in a piloted lean-premixed combustor) or when the residence time of the flame zone is very short. The latter effect is a consequence of the short lifetime of the CH radical in flames.