纳米发生器
摩擦电效应
材料科学
能量收集
热电发电机
机械能
电压
热电效应
电气工程
功率(物理)
光电子学
复合材料
工程类
物理
量子力学
热力学
作者
Min Ki Kim,Myoung Soo Kim,Seungki Jo,Yong Jun Kim
标识
DOI:10.1088/0964-1726/25/12/125007
摘要
The triboelectric nanogenerator, an energy harvesting device that converts external kinetic energy into electrical energy through using a nano-structured triboelectric material, is well known as an energy harvester with a simple structure and high output voltage. However, triboelectric nanogenerators also inevitably generate heat resulting from the friction that arises from their inherent sliding motions. In this paper, we present a hybrid nanogenerator, which integrates a triboelectric generator and a thermoelectric generator (TEG) for harvesting both the kinetic friction energy and the heat energy that would otherwise be wasted. The triboelectric part consists of a polytetrafluoroethylene (PTFE) film with nano-structures and a movable aluminum panel. The thermoelectric part is attached to the bottom of the PTFE film by an adhesive phase change material layer. We confirmed that the hybrid nanogenerator can generate an output power that is higher than that generated by a single triboelectric nanogenerator or a TEG. The hybrid nanogenerator was capable of producing a power density of 14.98 mW cm−2. The output power, produced from a sliding motion of 12 cm s−1, was capable of instantaneously lighting up 100 commercial LED bulbs. The hybrid nanogenerator can charge a 47 μF capacitor at a charging rate of 7.0 mV s−1, which is 13.3% faster than a single triboelectric generator. Furthermore, the efficiency of the device was significantly improved by the addition of a heat source. This hybrid energy harvester does not require any difficult fabrication steps, relative to existing triboelectric nanogenerators. The present study addresses a method for increasing the efficiency while solving other problems associated with triboelectric nanogenerators.
科研通智能强力驱动
Strongly Powered by AbleSci AI