Implant Placement Is More Accurate Using Dynamic Navigation

医学 牙科 植入 口腔正畸科 外科
作者
Michael S. Block,Robert W. Emery,Daniel R. Cullum,Ali Sheikh
出处
期刊:Journal of Oral and Maxillofacial Surgery [Elsevier BV]
卷期号:75 (7): 1377-1386 被引量:169
标识
DOI:10.1016/j.joms.2017.02.026
摘要

Purpose The purpose of this prospective study was to measure and compare the accuracy and precision of dynamic navigation with freehand (FH) implant fixture placement. The authors hypothesized that the evaluated dynamic navigation system would have high accuracy and precision and would be superior to FH methods. Materials and Methods The authors designed and implemented a prospective cohort study and enrolled patients who had implants placed from December 2014 through December 2016. The predictor variable was implant placement technique comparing fully guided (FG) and partially guided (PG) dynamic navigation with FH placement. The outcome variables were accuracy measured as deviation from the virtual plan, and precision was represented as the standard deviation of the measurements. Analysis of variance (ANOVA) was used to compare measurements. Virtual implant placement was compared with post-implant placement using mesh analysis. Deviations from the virtual plan were recorded for each implant for each surgeon. FH implant placement was evaluated by comparing a virtual plan with postoperative scans for patients who did not have the navigation system used for their implant placement. One-way ANOVA was performed to determine within-group and between-groups differences to determine whether there were meaningful differences among surgeons and methods (FG, PG, and FH) of placement. Results Prospective data from 478 patients involving 714 implants were evaluated. There were no demographic differences among surgeons. The sample size differed by the number of implants placed by each surgeon. Within each method group, the only difference among surgeons was angular deviation. All surgeons' data were combined. For FG navigation, the mean angular deviation was 2.97 ± 2.09°, the mean global platform position deviation was 1.16 ± 0.59 mm, and the mean global apical position deviation was 1.29 ± 0.65 mm. For PG navigation, the mean angular deviation was 3.43 ± 2.33°, the mean global platform position deviation was 1.31 ± 0.68 mm, and the mean global apical position deviation was 1.52 ± 0.78 mm. For FH placement, the mean angular deviation was 6.50 ± 4.21°, the mean global platform position deviation was 1.78 ± 0.77 mm, and the mean global apical position deviation was 2.27 ± 1.02 mm. Differences in measurements comparing FG and PG navigation with FH indicated significantly less deviation from the virtual plan (P < .05) using navigation. Conclusions Accuracy and precision for implant placement were achieved using dynamic navigation. The use of this type of method results in smaller deviations from the planned placement compared with FH approaches. The purpose of this prospective study was to measure and compare the accuracy and precision of dynamic navigation with freehand (FH) implant fixture placement. The authors hypothesized that the evaluated dynamic navigation system would have high accuracy and precision and would be superior to FH methods. The authors designed and implemented a prospective cohort study and enrolled patients who had implants placed from December 2014 through December 2016. The predictor variable was implant placement technique comparing fully guided (FG) and partially guided (PG) dynamic navigation with FH placement. The outcome variables were accuracy measured as deviation from the virtual plan, and precision was represented as the standard deviation of the measurements. Analysis of variance (ANOVA) was used to compare measurements. Virtual implant placement was compared with post-implant placement using mesh analysis. Deviations from the virtual plan were recorded for each implant for each surgeon. FH implant placement was evaluated by comparing a virtual plan with postoperative scans for patients who did not have the navigation system used for their implant placement. One-way ANOVA was performed to determine within-group and between-groups differences to determine whether there were meaningful differences among surgeons and methods (FG, PG, and FH) of placement. Prospective data from 478 patients involving 714 implants were evaluated. There were no demographic differences among surgeons. The sample size differed by the number of implants placed by each surgeon. Within each method group, the only difference among surgeons was angular deviation. All surgeons' data were combined. For FG navigation, the mean angular deviation was 2.97 ± 2.09°, the mean global platform position deviation was 1.16 ± 0.59 mm, and the mean global apical position deviation was 1.29 ± 0.65 mm. For PG navigation, the mean angular deviation was 3.43 ± 2.33°, the mean global platform position deviation was 1.31 ± 0.68 mm, and the mean global apical position deviation was 1.52 ± 0.78 mm. For FH placement, the mean angular deviation was 6.50 ± 4.21°, the mean global platform position deviation was 1.78 ± 0.77 mm, and the mean global apical position deviation was 2.27 ± 1.02 mm. Differences in measurements comparing FG and PG navigation with FH indicated significantly less deviation from the virtual plan (P < .05) using navigation. Accuracy and precision for implant placement were achieved using dynamic navigation. The use of this type of method results in smaller deviations from the planned placement compared with FH approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高乾飞完成签到 ,获得积分10
1秒前
河大青椒完成签到,获得积分10
1秒前
丘比特应助动听的秋白采纳,获得10
2秒前
晒黑的雪碧完成签到,获得积分10
3秒前
yao chen完成签到,获得积分10
4秒前
catch完成签到,获得积分10
4秒前
Hrx完成签到,获得积分10
4秒前
哎呀哎呀25完成签到,获得积分10
5秒前
8秒前
Shark完成签到 ,获得积分10
8秒前
我要发财完成签到,获得积分10
9秒前
卡卡罗特完成签到,获得积分10
9秒前
9秒前
天天向上完成签到 ,获得积分10
10秒前
Xinxxx完成签到,获得积分10
10秒前
Echoheart完成签到,获得积分10
10秒前
Hrx发布了新的文献求助10
11秒前
我要发财发布了新的文献求助10
13秒前
WJing发布了新的文献求助10
14秒前
haonanchen完成签到,获得积分10
15秒前
彭于晏应助专注的白柏采纳,获得10
15秒前
99v587完成签到,获得积分10
16秒前
愤怒的小马发布了新的文献求助200
17秒前
朴素海亦完成签到 ,获得积分10
18秒前
wishes完成签到 ,获得积分10
19秒前
19秒前
南城完成签到 ,获得积分10
20秒前
20秒前
22秒前
Andy完成签到,获得积分10
24秒前
伦语发布了新的文献求助10
24秒前
xdc发布了新的文献求助10
26秒前
zoe发布了新的文献求助10
28秒前
ccCherub完成签到,获得积分10
30秒前
霍楠完成签到,获得积分10
30秒前
星辰大海应助rainny采纳,获得10
30秒前
EZ完成签到 ,获得积分10
30秒前
谨慎翎完成签到 ,获得积分10
31秒前
tiantian8715完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029