Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics

多铁性 涡流 物理 可控性 拓扑缺陷 凝聚态物理 相变 拓扑(电路) 领域(数学) 偶极子 铁电性 量子力学 电介质 电气工程 工程类 热力学 数学 应用数学 纯数学
作者
Yue Zheng,W J Chen
出处
期刊:Reports on Progress in Physics [IOP Publishing]
卷期号:80 (8): 086501-086501 被引量:82
标识
DOI:10.1088/1361-6633/aa5e03
摘要

Topological defects in condensed matter are attracting e significant attention due to their important role in phase transition and their fascinating characteristics. Among the various types of matter, ferroics which possess a switchable physical characteristic and form domain structure are ideal systems to form topological defects. In particular, a special class of topological defects—vortices—have been found to commonly exist in ferroics. They often manifest themselves as singular regions where domains merge in large systems, or stabilize as novel order states instead of forming domain structures in small enough systems. Understanding the characteristics and controllability of vortices in ferroics can provide us with deeper insight into the phase transition of condensed matter and also exciting opportunities in designing novel functional devices such as nano-memories, sensors, and transducers based on topological defects. In this review, we summarize the recent experimental and theoretical progress in ferroic vortices, with emphasis on those spin/dipole vortices formed in nanoscale ferromagnetics and ferroelectrics, and those structural domain vortices formed in multiferroic hexagonal manganites. We begin with an overview of this field. The fundamental concepts of ferroic vortices, followed by the theoretical simulation and experimental methods to explore ferroic vortices, are then introduced. The various characteristics of vortices (e.g. formation mechanisms, static/dynamic features, and electronic properties) and their controllability (e.g. by size, geometry, external thermal, electrical, magnetic, or mechanical fields) in ferromagnetics, ferroelectrics, and multiferroics are discussed in detail in individual sections. Finally, we conclude this review with an outlook on this rapidly developing field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Yixin_Niu采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
充电宝应助张志超采纳,获得10
2秒前
谦让平安发布了新的文献求助10
2秒前
幺鸡豆子完成签到,获得积分20
3秒前
能干外套发布了新的文献求助10
3秒前
mengtingmei应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
zz应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
zxy应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
asdfzxcv应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
spc68应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
zz应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
zz应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得30
5秒前
spc68应助科研通管家采纳,获得10
5秒前
yifan21完成签到,获得积分0
5秒前
烟花应助科研通管家采纳,获得30
5秒前
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
所所应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
葫芦娃发布了新的文献求助20
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
逸之狐应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661387
求助须知:如何正确求助?哪些是违规求助? 4838678
关于积分的说明 15095847
捐赠科研通 4820153
什么是DOI,文献DOI怎么找? 2579773
邀请新用户注册赠送积分活动 1534034
关于科研通互助平台的介绍 1492769