材料科学
水溶液
锌
法拉第效率
阳极
电解质
金属
氢
化学工程
电池(电)
分析化学(期刊)
电极
无机化学
冶金
化学
色谱法
物理化学
功率(物理)
有机化学
工程类
物理
量子力学
作者
Longtao Ma,Qing Li,Yiran Ying,Fei‐Xiang Ma,Shengmei Chen,Yang Yang Li,Haitao Huang,Chunyi Zhi
标识
DOI:10.1002/adma.202007406
摘要
Abstract The hydrogen evolution in Zn metal battery is accurately quantified by in situ battery–gas chromatography–mass analysis. The hydrogen fluxes reach 3.76 mmol h −1 cm −2 in a Zn//Zn symmetric cell in each segment, and 7.70 mmol h −1 cm −2 in a Zn//MnO 2 full cell. Then, a highly electronically insulating (0.11 mS cm −1 ) but highly Zn 2+ ion conductive (80.2 mS cm −1 ) ZnF 2 solid ion conductor with high Zn 2+ transfer number (0.65) is constructed to isolate Zn metal from liquid electrolyte, which not only prohibits over 99.2% parasitic hydrogen evolution but also guides uniform Zn electrodeposition. Precisely quantitated, the Zn@ZnF 2 //Zn@ZnF 2 cell only produces 0.02 mmol h −1 cm −2 of hydrogen (0.53% of the Zn//Zn cell). Encouragingly, a high‐areal‐capacity Zn@ZnF 2 //MnO 2 (≈3.2 mAh cm −2 ) full cell only produces maximum hydrogen flux of 0.06 mmol h −1 cm −2 (0.78% of the Zn//Zn cell) at the fully charging state. Meanwhile, Zn@ZnF 2 //Zn@ZnF 2 symmetric cell exhibits excellent stability under ultrahigh current density and areal capacity (10 mA cm −2 , 10 mAh cm −2 ) over 590 h (285 cycles), which far outperforms all reported Zn metal anodes in aqueous systems. In light of the superior Zn@ZnF 2 anode, the high‐areal‐capacity aqueous Zn@ZnF 2 //MnO 2 batteries (≈3.2 mAh cm −2 ) shows remarkable cycling stability over 1000 cycles with 93.63% capacity retained at ≈100% Coulombic efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI