激光阈值
量子点
材料科学
光电子学
量子点激光器
激光器
电致发光
俄歇效应
半导体激光器理论
纳米晶
二极管
纳米技术
波长
光学
物理
螺旋钻
图层(电子)
原子物理学
作者
Young‐Shin Park,Jeongkyun Roh,Benjamin T. Diroll,Richard D. Schaller,Victor I. Klimov
标识
DOI:10.1038/s41578-020-00274-9
摘要
Semiconductor nanocrystals represent a promising class of solution-processable optical-gain media that can be manipulated via inexpensive, easily scalable colloidal techniques. Due to their extremely small sizes (typically <10 nm), their properties can be directly controlled via effects of quantum confinement; therefore, they are often termed colloidal quantum dots (CQDs). In addition to size-tunable emission wavelengths, CQDs offer other benefits for lasing applications, including low optical-gain thresholds and high temperature stability of lasing characteristics. Recent progress in understanding and practical control of processes impeding light amplification in CQDs has resulted in several breakthroughs, including the demonstration of optically pumped continuous-wave lasing, the realization of optical gain with direct current electrical injection and the development of dual-function electroluminescent devices that also operate as optically pumped lasers. The purpose of this Review is to assess the status of the field of CQD lasing and discuss the existing challenges and opportunities. A particular focus is on approaches for suppressing nonradiative Auger recombination, novel optical-gain concepts enabled by strong exciton–exciton interactions and controlled CQD charging, effects of nanocrystal form factors on light amplification and practical architectures for realizing electrically pumped CQD lasers. This overview suggests that the accumulated knowledge, along with the approaches developed for manipulating the optical-gain properties of colloidal nanostructures, perfectly position the CQD field for successfully addressing a long-standing challenge: the realization of CQD-based laser diodes. Colloidal quantum dots are promising materials for realizing versatile, wavelength-tunable, solution-processed lasers. This Review surveys recent advances in colloidal quantum dot lasing, provides an in-depth analysis of outstanding challenges and discusses a path forward to implementing technologically viable lasing devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI