An insight into effect of front surface field on the performance of interdigitated back contact silicon heterojunction solar cells

钝化 材料科学 异质结 兴奋剂 光电子学 电荷密度 载流子 太阳能电池 电场 载流子寿命 纳米技术 图层(电子) 物理 量子力学
作者
Jianhui Bao,Shengzhong Liu,Yiren Lin,Ying Zhou
出处
期刊:Materials Chemistry and Physics [Elsevier]
卷期号:255: 123625-123625 被引量:3
标识
DOI:10.1016/j.matchemphys.2020.123625
摘要

The development of interdigitated back contact silicon heterojunction has been flourishing in the field of solar cells. The front surface field has a decisive influence on the electrical field effect passivation of interdigitated back contact silicon heterojunction solar cells, and the effect of passivation layers on the performance of solar cells needs to be clarified. In this study, the two-dimension TCAD models of the doped n+-a-Si: H layer and SiNx with a fixed charge layer were established by the Sentaurus code, respectively. The space charge density and electric field intensity, carrier transportation, and distribution of current density were numerically analyzed to evaluate the effect of these two front surfaces on the performance of interdigitated back contact silicon heterojunction solar cells. The results show that for SiNx, the root cause of the field passivation is the surface fixed charge density. The combination of the doping concentration and layer thickness directly affects the field passivation of n+-a-Si: H. Based on the intuitive carrier transport vector, the selective transportation of the carrier near the surface is proved by the front surface field, which effectively inhibits the recombination. The current density distribution on the cross-section reveals that a strong front surface field is an effective way to reduce the internal recombination in particular. Considering practical operating conditions, a doping concentration of 1e20 cm−3, in combination with 7 nm layer thickness, potentially improves the front surface field of n+ a-Si: H leading to the maximum conversion efficiency of 27.41%, with the voltage increased by 32.8 mV and the fill factor reaching 86.84%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangling0124发布了新的文献求助10
1秒前
开放雪曼发布了新的文献求助10
1秒前
熊亚丹发布了新的文献求助10
1秒前
2秒前
2秒前
PROPELLER完成签到,获得积分10
2秒前
lianliyou发布了新的文献求助10
3秒前
谦让的丝完成签到,获得积分10
4秒前
等待香寒完成签到 ,获得积分10
4秒前
lyk完成签到,获得积分10
5秒前
七一发布了新的文献求助10
6秒前
做小舟完成签到,获得积分10
7秒前
秋秋完成签到,获得积分10
7秒前
明亮的妙芙应助猪猪侠采纳,获得20
8秒前
imessi发布了新的文献求助10
8秒前
丘比特应助小侯采纳,获得10
9秒前
9秒前
123关注了科研通微信公众号
11秒前
777完成签到,获得积分10
12秒前
桃儿完成签到,获得积分10
12秒前
小只完成签到,获得积分10
13秒前
ccccccc完成签到 ,获得积分10
13秒前
yly完成签到,获得积分20
13秒前
13秒前
14秒前
15秒前
Ferdinand完成签到,获得积分10
15秒前
15秒前
纪震宇发布了新的文献求助10
16秒前
努力的明明应助joleisalau采纳,获得10
17秒前
123关注了科研通微信公众号
17秒前
天天快乐应助孙67采纳,获得10
18秒前
小书包发布了新的文献求助10
18秒前
19秒前
HelloJoey发布了新的文献求助10
20秒前
20秒前
JamesPei应助zy3637采纳,获得10
20秒前
英俊的铭应助动听的谷秋采纳,获得10
21秒前
Vivian发布了新的文献求助10
22秒前
123关注了科研通微信公众号
22秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Evolution 1100
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 550
Peptide Self-Assembly and Engineering: Fundamentals, Structures, and Applications, Volumes 1-2 500
Assessment of Ultrasonographic Measurement of Inferior Vena Cava Collapsibility Index in The Prediction of Hypotension Associated with Tourniquet Release in Total Knee Replacement Surgeries under Spinal Anesthesia 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2982245
求助须知:如何正确求助?哪些是违规求助? 2643486
关于积分的说明 7135286
捐赠科研通 2276993
什么是DOI,文献DOI怎么找? 1207960
版权声明 592109
科研通“疑难数据库(出版商)”最低求助积分说明 590097