ResNet-Locust-BN Network-Based Automatic Identification of East Asian Migratory Locust Species and Instars from RGB Images

蝗虫 飞蝗 卷积神经网络 人工智能 生物 模式识别(心理学) 深度学习 计算机科学 生态学
作者
Sijing Ye,Shuhan Lu,Xuesong Bai,Jinfeng Gu
出处
期刊:Insects [MDPI AG]
卷期号:11 (8): 458-458 被引量:27
标识
DOI:10.3390/insects11080458
摘要

Locusts are agricultural pests found in many parts of the world. Developing efficient and accurate locust information acquisition techniques helps in understanding the relation between locust distribution density and structural changes in locust communities. It also helps in understanding the hydrothermal and vegetation growth conditions that affect locusts in their habitats in various parts of the world as well as in providing rapid and accurate warnings on locust plague outbreak. This study is a preliminary attempt to explore whether the batch normalization-based convolutional neural network (CNN) model can be applied used to perform automatic classification of East Asian migratory locust (AM locust), Oxya chinensis (rice locusts), and cotton locusts. In this paper, we present a way of applying the CNN technique to identify species and instars of locusts using the proposed ResNet-Locust-BN model. This model is based on the ResNet architecture and involves introduction of a BatchNorm function before each convolution layer to improve the network's stability, convergence speed, and classification accuracy. Subsequently, locust image data collected in the field were used as input to train the model. By performing comparison experiments of the activation function, initial learning rate, and batch size, we selected ReLU as the preferred activation function. The initial learning rate and batch size were set to 0.1 and 32, respectively. Experiments performed to evaluate the accuracy of the proposed ResNet-Locust-BN model show that the model can effectively distinguish AM locust from rice locusts (93.60% accuracy) and cotton locusts (97.80% accuracy). The model also performed well in identifying the growth status information of AM locusts (third-instar (77.20% accuracy), fifth-instar (88.40% accuracy), and adult (93.80% accuracy)) with an overall accuracy of 90.16%. This is higher than the accuracy scores obtained by using other typical models: AlexNet (73.68%), GoogLeNet (69.12%), ResNet 18 (67.60%), ResNet 50 (80.84%), and VggNet (81.70%). Further, the model has good robustness and fast convergence rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WSY发布了新的文献求助10
刚刚
老汉憨憨完成签到,获得积分10
1秒前
Puffkten发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
无花果应助lixin采纳,获得10
4秒前
5秒前
5秒前
6秒前
橙汁关注了科研通微信公众号
6秒前
美好的千凝完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
没头脑但特高兴完成签到,获得积分10
9秒前
酷波er应助randylch采纳,获得10
9秒前
科目三应助Jeremy采纳,获得10
11秒前
wdj7171完成签到,获得积分20
11秒前
天天快乐应助li采纳,获得10
11秒前
11秒前
cat发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
14秒前
光亮灯泡发布了新的文献求助10
15秒前
15秒前
白忻发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
杨武天一发布了新的文献求助10
17秒前
我爱电解液完成签到,获得积分10
18秒前
快乐的天玉完成签到,获得积分10
19秒前
Retromer发布了新的文献求助10
21秒前
充电宝应助Sweet采纳,获得10
21秒前
21秒前
21秒前
浮游应助美好的千凝采纳,获得10
21秒前
bkagyin应助美好的千凝采纳,获得10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405246
求助须知:如何正确求助?哪些是违规求助? 4523584
关于积分的说明 14094210
捐赠科研通 4437323
什么是DOI,文献DOI怎么找? 2435615
邀请新用户注册赠送积分活动 1427752
关于科研通互助平台的介绍 1406057