ResNet-Locust-BN Network-Based Automatic Identification of East Asian Migratory Locust Species and Instars from RGB Images

蝗虫 飞蝗 卷积神经网络 人工智能 生物 模式识别(心理学) 深度学习 计算机科学 生态学
作者
Sijing Ye,Shuhan Lu,Xuesong Bai,Jinfeng Gu
出处
期刊:Insects [MDPI AG]
卷期号:11 (8): 458-458 被引量:27
标识
DOI:10.3390/insects11080458
摘要

Locusts are agricultural pests found in many parts of the world. Developing efficient and accurate locust information acquisition techniques helps in understanding the relation between locust distribution density and structural changes in locust communities. It also helps in understanding the hydrothermal and vegetation growth conditions that affect locusts in their habitats in various parts of the world as well as in providing rapid and accurate warnings on locust plague outbreak. This study is a preliminary attempt to explore whether the batch normalization-based convolutional neural network (CNN) model can be applied used to perform automatic classification of East Asian migratory locust (AM locust), Oxya chinensis (rice locusts), and cotton locusts. In this paper, we present a way of applying the CNN technique to identify species and instars of locusts using the proposed ResNet-Locust-BN model. This model is based on the ResNet architecture and involves introduction of a BatchNorm function before each convolution layer to improve the network's stability, convergence speed, and classification accuracy. Subsequently, locust image data collected in the field were used as input to train the model. By performing comparison experiments of the activation function, initial learning rate, and batch size, we selected ReLU as the preferred activation function. The initial learning rate and batch size were set to 0.1 and 32, respectively. Experiments performed to evaluate the accuracy of the proposed ResNet-Locust-BN model show that the model can effectively distinguish AM locust from rice locusts (93.60% accuracy) and cotton locusts (97.80% accuracy). The model also performed well in identifying the growth status information of AM locusts (third-instar (77.20% accuracy), fifth-instar (88.40% accuracy), and adult (93.80% accuracy)) with an overall accuracy of 90.16%. This is higher than the accuracy scores obtained by using other typical models: AlexNet (73.68%), GoogLeNet (69.12%), ResNet 18 (67.60%), ResNet 50 (80.84%), and VggNet (81.70%). Further, the model has good robustness and fast convergence rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanghaowen完成签到,获得积分10
刚刚
Owen应助burrrrr采纳,获得10
1秒前
zjj完成签到,获得积分10
1秒前
Cassio完成签到,获得积分10
2秒前
T淋巴细胞发布了新的文献求助10
2秒前
李李完成签到 ,获得积分20
2秒前
2秒前
丘比特应助陈颜采纳,获得10
3秒前
3秒前
4秒前
李希有发布了新的文献求助10
5秒前
6秒前
7秒前
英姑应助wjx666777采纳,获得10
7秒前
zjj发布了新的文献求助10
8秒前
kerr完成签到 ,获得积分10
8秒前
WL发布了新的文献求助10
8秒前
9秒前
上官若男应助yang采纳,获得10
9秒前
hhhhr发布了新的文献求助10
9秒前
10秒前
小猫宝发布了新的文献求助10
11秒前
logical发布了新的文献求助10
11秒前
领导范儿应助任性雁露采纳,获得10
14秒前
14秒前
14秒前
15秒前
我是老大应助小王爱科研采纳,获得10
15秒前
15秒前
findmoon发布了新的文献求助10
16秒前
17秒前
哈哈哈完成签到 ,获得积分10
17秒前
ying发布了新的文献求助10
17秒前
17秒前
wjx666777完成签到,获得积分20
17秒前
sukasuka发布了新的文献求助10
18秒前
AbyssK发布了新的文献求助20
19秒前
今后应助美好斓采纳,获得10
19秒前
burrrrr发布了新的文献求助10
19秒前
搜集达人应助121采纳,获得10
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943