ResNet-Locust-BN Network-Based Automatic Identification of East Asian Migratory Locust Species and Instars from RGB Images

蝗虫 飞蝗 卷积神经网络 人工智能 生物 模式识别(心理学) 深度学习 计算机科学 生态学
作者
Sijing Ye,Shuhan Lu,Xuesong Bai,Jinfeng Gu
出处
期刊:Insects [Multidisciplinary Digital Publishing Institute]
卷期号:11 (8): 458-458 被引量:27
标识
DOI:10.3390/insects11080458
摘要

Locusts are agricultural pests found in many parts of the world. Developing efficient and accurate locust information acquisition techniques helps in understanding the relation between locust distribution density and structural changes in locust communities. It also helps in understanding the hydrothermal and vegetation growth conditions that affect locusts in their habitats in various parts of the world as well as in providing rapid and accurate warnings on locust plague outbreak. This study is a preliminary attempt to explore whether the batch normalization-based convolutional neural network (CNN) model can be applied used to perform automatic classification of East Asian migratory locust (AM locust), Oxya chinensis (rice locusts), and cotton locusts. In this paper, we present a way of applying the CNN technique to identify species and instars of locusts using the proposed ResNet-Locust-BN model. This model is based on the ResNet architecture and involves introduction of a BatchNorm function before each convolution layer to improve the network's stability, convergence speed, and classification accuracy. Subsequently, locust image data collected in the field were used as input to train the model. By performing comparison experiments of the activation function, initial learning rate, and batch size, we selected ReLU as the preferred activation function. The initial learning rate and batch size were set to 0.1 and 32, respectively. Experiments performed to evaluate the accuracy of the proposed ResNet-Locust-BN model show that the model can effectively distinguish AM locust from rice locusts (93.60% accuracy) and cotton locusts (97.80% accuracy). The model also performed well in identifying the growth status information of AM locusts (third-instar (77.20% accuracy), fifth-instar (88.40% accuracy), and adult (93.80% accuracy)) with an overall accuracy of 90.16%. This is higher than the accuracy scores obtained by using other typical models: AlexNet (73.68%), GoogLeNet (69.12%), ResNet 18 (67.60%), ResNet 50 (80.84%), and VggNet (81.70%). Further, the model has good robustness and fast convergence rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马路完成签到 ,获得积分10
1秒前
再慕完成签到,获得积分10
2秒前
guangshuang发布了新的文献求助10
2秒前
眯眯眼的衬衫应助小淘气采纳,获得10
6秒前
JamesPei应助aaaaa采纳,获得10
7秒前
CAOHOU举报细心小鸭子求助涉嫌违规
9秒前
Merlin应助Zack采纳,获得30
10秒前
奋斗向南完成签到,获得积分10
10秒前
雪碧发布了新的文献求助20
10秒前
Hello应助坚强的赛凤采纳,获得10
10秒前
志轩应助李锐采纳,获得10
11秒前
酷炫鑫完成签到,获得积分10
12秒前
13秒前
小比熊完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
16秒前
17秒前
Rondab应助科研通管家采纳,获得10
17秒前
17秒前
Rondab应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
18秒前
走四方应助科研通管家采纳,获得20
18秒前
18秒前
科目三应助科研通管家采纳,获得10
18秒前
潇洒应助科研通管家采纳,获得10
18秒前
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
酷波er应助李锐采纳,获得10
18秒前
研友_VZG7GZ应助李锐采纳,获得10
18秒前
桐桐应助李锐采纳,获得10
18秒前
李健的小迷弟应助李锐采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959141
求助须知:如何正确求助?哪些是违规求助? 3505468
关于积分的说明 11123941
捐赠科研通 3237159
什么是DOI,文献DOI怎么找? 1788988
邀请新用户注册赠送积分活动 871478
科研通“疑难数据库(出版商)”最低求助积分说明 802824