清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Wave data prediction and reconstruction by recurrent neural networks at the nearshore area of Norderney

浮标 有效波高 海底管道 人工神经网络 气象学 风暴 海况 波高 风暴潮 风浪 气候学 环境科学 海洋学 地质学 计算机科学 地理 机器学习
作者
Christoph Jörges,Cordula Berkenbrink,Britta Stumpe
标识
DOI:10.5194/egusphere-egu2020-19772
摘要

<p><span>Sea level rise, a possible increase in frequency and intensity of storms and other effects of global warming exert pressure on the coastal regions of the North Sea. Also storm surges threaten the basis of existence for many people in the affected areas. As well as for building coastal protection or offshore structures, detailed knowledge of wave data, especially the wave height, is of particular interest. Therefore, the nearshore wave climate at the island Norderney is measured by buoys since the early 1990s. Caused by crossing ships or weather impacts, these buoys can be damaged. This leads to a huge amount of missing data in the wave data time series, which are the basis for numerical modelling, statistical analysis and developing coastal protection.<br>Artificial neural networks are a common method to reconstruct and forecast wave heights nowadays. This study shows a new technique to reconstruct and forecast significant wave height measured by buoys in the nearshore area of the Norderney coastline. Buoy data of the period 2004 to 2017 from the NLWKN – Coastal Research Station at Norderney were used to train three different statistical and machine learning models namely linear regression, feed-forward neural network and long short-term memory (LSTM), respectively. An energy density spectrum was tested against calculated sea state parameter as input. The LSTM – a recurrent neural network – is the proposed algorithm to reconstruct wave height data. It is especially designed for sequential data, but was performed on wave spectral data in this study for the first time. Depending on the input parameter of the respectively model, the LSTM can reconstruct and forecast time series of arbitrary length.<br>Using information about wind speed and direction and water depth, as well as the wave height of two neighboring buoy stations, the LSTM reconstructs the wave height with a correlation coefficient of 0.98 between measured and reconstructed data.<br>Unfortunately, the forecasting and reconstruction error of extreme events is highly underestimated, though these events are of great interest for climate and ocean science. Currently, this error is being specifically attempted to improve. Compared to numerical modeling, the machine learning approach requires less computational effort. Results of this study can be used to complete spatial and temporal wave height datasets, providing a better basis for trend analysis in relation to climate change and for validating numerical models for decision making in coastal protection and management.</span></p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkscanl完成签到 ,获得积分10
9秒前
49秒前
高高珩完成签到 ,获得积分10
51秒前
kmzzy完成签到,获得积分10
1分钟前
1分钟前
Lidanni完成签到 ,获得积分10
1分钟前
576-576完成签到 ,获得积分10
1分钟前
古代猪完成签到 ,获得积分10
1分钟前
现代鱼完成签到 ,获得积分10
1分钟前
1分钟前
jlwang完成签到,获得积分10
1分钟前
2分钟前
Orange应助cy采纳,获得10
2分钟前
领导范儿应助happy采纳,获得50
2分钟前
3分钟前
cy发布了新的文献求助10
3分钟前
cy完成签到,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
P_Chem完成签到,获得积分10
3分钟前
铜豌豆完成签到 ,获得积分10
3分钟前
friend516完成签到 ,获得积分10
3分钟前
3分钟前
MM完成签到,获得积分0
4分钟前
FashionBoy应助MM采纳,获得10
4分钟前
4分钟前
4分钟前
happy发布了新的文献求助50
4分钟前
lling完成签到 ,获得积分10
4分钟前
天天快乐应助读书的时候采纳,获得10
4分钟前
种下梧桐树完成签到 ,获得积分10
4分钟前
科目三应助读书的时候采纳,获得10
5分钟前
开心每一天完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
MM发布了新的文献求助10
5分钟前
叛逆黑洞完成签到 ,获得积分10
5分钟前
5分钟前
三心草完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732639
求助须知:如何正确求助?哪些是违规求助? 5341407
关于积分的说明 15322394
捐赠科研通 4878072
什么是DOI,文献DOI怎么找? 2620935
邀请新用户注册赠送积分活动 1570076
关于科研通互助平台的介绍 1526836