Wave data prediction and reconstruction by recurrent neural networks at the nearshore area of Norderney

浮标 有效波高 海底管道 人工神经网络 气象学 风暴 海况 波高 风暴潮 风浪 气候学 环境科学 海洋学 地质学 计算机科学 地理 机器学习
作者
Christoph Jörges,Cordula Berkenbrink,Britta Stumpe
标识
DOI:10.5194/egusphere-egu2020-19772
摘要

<p><span>Sea level rise, a possible increase in frequency and intensity of storms and other effects of global warming exert pressure on the coastal regions of the North Sea. Also storm surges threaten the basis of existence for many people in the affected areas. As well as for building coastal protection or offshore structures, detailed knowledge of wave data, especially the wave height, is of particular interest. Therefore, the nearshore wave climate at the island Norderney is measured by buoys since the early 1990s. Caused by crossing ships or weather impacts, these buoys can be damaged. This leads to a huge amount of missing data in the wave data time series, which are the basis for numerical modelling, statistical analysis and developing coastal protection.<br>Artificial neural networks are a common method to reconstruct and forecast wave heights nowadays. This study shows a new technique to reconstruct and forecast significant wave height measured by buoys in the nearshore area of the Norderney coastline. Buoy data of the period 2004 to 2017 from the NLWKN – Coastal Research Station at Norderney were used to train three different statistical and machine learning models namely linear regression, feed-forward neural network and long short-term memory (LSTM), respectively. An energy density spectrum was tested against calculated sea state parameter as input. The LSTM – a recurrent neural network – is the proposed algorithm to reconstruct wave height data. It is especially designed for sequential data, but was performed on wave spectral data in this study for the first time. Depending on the input parameter of the respectively model, the LSTM can reconstruct and forecast time series of arbitrary length.<br>Using information about wind speed and direction and water depth, as well as the wave height of two neighboring buoy stations, the LSTM reconstructs the wave height with a correlation coefficient of 0.98 between measured and reconstructed data.<br>Unfortunately, the forecasting and reconstruction error of extreme events is highly underestimated, though these events are of great interest for climate and ocean science. Currently, this error is being specifically attempted to improve. Compared to numerical modeling, the machine learning approach requires less computational effort. Results of this study can be used to complete spatial and temporal wave height datasets, providing a better basis for trend analysis in relation to climate change and for validating numerical models for decision making in coastal protection and management.</span></p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特流沙发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
可爱的函函应助kehan采纳,获得10
刚刚
djiwisksk66应助华十三采纳,获得10
1秒前
2秒前
一一一完成签到,获得积分10
2秒前
乐风完成签到 ,获得积分10
2秒前
坚定的语芙关注了科研通微信公众号
3秒前
HHHH完成签到,获得积分10
3秒前
义气碧菡完成签到,获得积分10
3秒前
执着梦山发布了新的文献求助10
4秒前
共享精神应助ll采纳,获得10
4秒前
浅夏完成签到,获得积分10
5秒前
哈尼完成签到,获得积分10
5秒前
CipherSage应助zjq采纳,获得10
6秒前
li发布了新的文献求助80
7秒前
7秒前
9秒前
JaneBing完成签到,获得积分10
9秒前
9秒前
9秒前
周久发布了新的文献求助10
9秒前
Nathan完成签到,获得积分10
10秒前
小夜盲J完成签到,获得积分10
10秒前
爱宝乐宝福宝完成签到,获得积分10
10秒前
畅快的天空完成签到,获得积分10
10秒前
mf发布了新的文献求助10
11秒前
DW完成签到,获得积分10
11秒前
执着梦山完成签到,获得积分10
11秒前
123完成签到,获得积分10
11秒前
ChenChen发布了新的文献求助10
12秒前
12秒前
13秒前
友好的灯泡完成签到,获得积分10
14秒前
centlay发布了新的文献求助10
15秒前
ll发布了新的文献求助10
15秒前
15秒前
DKE完成签到,获得积分10
15秒前
15秒前
斯文败类应助fufu采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951189
求助须知:如何正确求助?哪些是违规求助? 3496538
关于积分的说明 11083082
捐赠科研通 3227010
什么是DOI,文献DOI怎么找? 1784166
邀请新用户注册赠送积分活动 868234
科研通“疑难数据库(出版商)”最低求助积分说明 801089