Refined micro-scale geological disaster susceptibility evaluation based on UAV tilt photography data and weighted certainty factor method in Mountainous Area

地质灾害 比例(比率) 遥感 地质调查 航空摄影 数据挖掘 地质学 计算机科学 环境科学 采矿工程 地理 地图学 岩土工程 古生物学 山崩
作者
Jingjing Wang,Shuang Zhu,Xiangang Luo,Gang Chen,Zhanya Xu,Xiuwei Liu,Yangchun Li
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier]
卷期号:189: 110005-110005 被引量:24
标识
DOI:10.1016/j.ecoenv.2019.110005
摘要

Frequent geological disasters based on a range of precipitating factors occur in areas with fragile geological environments, and the traditional artificial geological disaster survey method is often too dangerous to be carried out effectively. In order to achieve more efficient influence factors and refine the evaluation of micro-scale geological disaster susceptibility, this paper used UAV tilt photography and image processing technology to construct a 3D model of the geological environment. Geological disaster influence factors were extracted from a typical geological disaster area within Qingchuan County, Sichuan Province. A weighted certainty factor method and information model method were used to evaluate geological disaster susceptibility. The geological disaster susceptibility index of different characteristic variables was calculated using a certainty factors method, while factor weight was determined using an information model. The geological environment "potentiality parameter" for each grid unit, taken as the basis of geological disaster susceptibility zoning in the area, was calculated by coupling factor weight and CF value. Finally, the ROC test method was used to verify evaluation results of geological hazard susceptibility. This study found that: (1) UAV tilt photogrammetry data can be an effective method for geological disaster susceptibility evaluation. (2) The areas under the ROC curve calculated using the two methods were 66.20% and 81.71%, respectively, showing that accuracy of the weighted certainty factor method was higher than that of the information method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鞘皮完成签到,获得积分10
1秒前
直率的灵安完成签到,获得积分10
3秒前
Hui发布了新的文献求助10
3秒前
lgh发布了新的文献求助10
4秒前
5秒前
希望天下0贩的0应助WANG采纳,获得10
5秒前
5秒前
奶桃七七完成签到 ,获得积分20
5秒前
李健的小迷弟应助happiness采纳,获得10
6秒前
隐形曼青应助认真无敌采纳,获得10
6秒前
6秒前
浩儿发布了新的文献求助10
7秒前
8秒前
Shiku完成签到,获得积分10
8秒前
剁椒鱼头完成签到 ,获得积分10
8秒前
9秒前
Shawn完成签到,获得积分10
9秒前
顾矜应助keke采纳,获得30
9秒前
lingod应助勤劳的硬币采纳,获得10
10秒前
协和_子鱼完成签到,获得积分0
10秒前
所所应助乐乐采纳,获得10
10秒前
Sun发布了新的文献求助10
11秒前
12秒前
可可可刻完成签到,获得积分10
12秒前
lzc发布了新的文献求助30
12秒前
李暴龙发布了新的文献求助10
13秒前
SLY完成签到,获得积分10
13秒前
bkagyin应助揍鱼采纳,获得10
13秒前
uwe完成签到,获得积分10
16秒前
英俊的铭应助Kamal采纳,获得10
16秒前
17秒前
ZYT完成签到,获得积分10
17秒前
Sun完成签到,获得积分10
17秒前
bbl关闭了bbl文献求助
18秒前
上野英三郎的秋天完成签到 ,获得积分10
19秒前
19秒前
20秒前
充电宝应助冷夏采纳,获得10
20秒前
21秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156848
求助须知:如何正确求助?哪些是违规求助? 2808269
关于积分的说明 7877026
捐赠科研通 2466691
什么是DOI,文献DOI怎么找? 1312998
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919