化学
机械转化
细胞生物学
软骨细胞
TRPV4型
软骨
药理学
生物物理学
瞬时受体电位通道
生物化学
受体
体外
医学
解剖
生物
作者
Su Fu,Huan Meng,Sheetal R. Inamdar,Biswajit Das,Himadri S. Gupta,W. Wang,Claire Thompson,Martin M. Knight
标识
DOI:10.1016/j.joca.2020.08.002
摘要
ObjectiveCartilage health is maintained in response to a range of mechanical stimuli including compressive, shear and tensile strains and associated alterations in osmolality. The osmotic-sensitive ion channel Transient Receptor Potential Vanilloid 4 (TRPV4) is required for mechanotransduction. Mechanical stimuli inhibit interleukin-1β (IL-1β) mediated inflammatory signalling, however the mechanism is unclear. This study aims to clarify the role of TRPV4 in this response.DesignTRPV4 activity was modulated glycogen synthase kinase (GSK205 antagonist or GSK1016790 A (GSK101) agonist) in articular chondrocytes and cartilage explants in the presence or absence of IL-1β, mechanical (10% cyclic tensile strain (CTS), 0.33 Hz, 24hrs) or osmotic loading (200mOsm, 24hrs). Nitric oxide (NO), prostaglandin E2 (PGE2) and sulphated glycosaminoglycan (sGAG) release and cartilage biomechanics were analysed. Alterations in post-translational tubulin modifications and primary cilia length regulation were examined.ResultsIn isolated chondrocytes, mechanical loading inhibited IL-1β mediated NO and PGE2 release. This response was inhibited by GSK205. Similarly, osmotic loading was anti-inflammatory in cells and explants, this response was abrogated by TRPV4 inhibition. In explants, GSK101 inhibited IL-1β mediated NO release and prevented cartilage degradation and loss of mechanical properties. Upon activation, TRPV4 cilia localisation was increased resulting in histone deacetylase 6 (HDAC6)-dependent modulation of soluble tubulin and altered cilia length regulation.ConclusionMechanical, osmotic or pharmaceutical activation of TRPV4 regulates HDAC6-dependent modulation of ciliary tubulin and is anti-inflammatory. This study reveals for the first time, the potential of TRPV4 manipulation as a novel therapeutic mechanism to supress pro-inflammatory signalling and cartilage degradation.
科研通智能强力驱动
Strongly Powered by AbleSci AI