A robust DWT–CNN‐based CAD system for early diagnosis of autism using task‐based fMRI

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 小波 机器学习 语音识别
作者
Reem Haweel,Ahmed Shalaby,Ali Mahmoud,Noha A. Seada,Said Ghoniemy,Mohammed Ghazal,Manuel F. Casanova,Gregory Barnes,Ayman El‐Baz
出处
期刊:Medical Physics [Wiley]
卷期号:48 (5): 2315-2326 被引量:31
标识
DOI:10.1002/mp.14692
摘要

Purpose Task‐based fMRI (TfMRI) is a diagnostic imaging modality for observing the effects of a disease or other condition on the functional activity of the brain. Autism spectrum disorder (ASD) is a pervasive developmental disorder associated with impairments in social and linguistic abilities. Machine learning algorithms have been widely utilized for brain imaging aiming for objective ASD diagnostics. Recently, deep learning methods have been gaining more attention for fMRI classification. The goal of this paper is to develop a convolutional neural network (CNN)‐based framework to help in global diagnosis of ASD using TfMRI data that are collected from a response to speech experiment. Methods To achieve this goal, the proposed framework adopts a novel imaging marker integrating both spatial and temporal information that are related to the functional activity of the brain. The developed pipeline consists of three main components. In the first step, the collected TfMRI data are preprocessed and parcellated using the Harvard–Oxford probabilistic atlas included with the fMRIB Software Library (FSL). Second, a group analysis using FSL is performed between ASD and typically developing (TD) children to identify significantly activated brain areas in response to the speech task. In order to reduce brain spatial dimensionality, a K‐means clustering technique is performed on such significant brain areas. Informative blood oxygen level‐dependent (BOLD) signals are extracted from each cluster. A compression step for each extracted BOLD signal using discrete wavelet transform (DWT) has been proposed. The adopted wavelets are similar to the expected hemodynamic response which enables DWT to compress the BOLD signal while highlighting its activation information. Finally, a deep learning 2D CNN network is used to classify the patients as ASD or TD based on extracted features from the previous step. Results Preliminary results on 100 TfMRI dataset (50 ASD, 50 TD) obtain 80% correct global classification using tenfold cross validation (with sensitivity = 84%, specificity = 76%). Conclusion The experimental results show the high accuracy of the proposed framework and hold promise for the presented framework as a helpful adjunct to currently used ASD diagnostic tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
艺阳完成签到,获得积分10
1秒前
2秒前
2秒前
馒头酶关注了科研通微信公众号
2秒前
只想求文献完成签到,获得积分20
2秒前
cc完成签到,获得积分20
2秒前
3秒前
3秒前
美满的大象完成签到 ,获得积分10
3秒前
3秒前
1111应助别偷我增肌粉采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
tjxhtj完成签到,获得积分10
4秒前
4秒前
5秒前
无限的宫苴完成签到 ,获得积分20
5秒前
华仔应助离歌采纳,获得30
5秒前
健珍发布了新的文献求助10
7秒前
twotwomi发布了新的文献求助10
7秒前
瓜瓜发布了新的文献求助10
7秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
赘婿应助和谐的追命采纳,获得10
9秒前
9秒前
9秒前
9秒前
中科路2020完成签到,获得积分10
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255