已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A robust DWT–CNN‐based CAD system for early diagnosis of autism using task‐based fMRI

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 小波 机器学习 语音识别
作者
Reem Haweel,Ahmed Shalaby,Ali Mahmoud,Noha A. Seada,Said Ghoniemy,Mohammed Ghazal,Manuel F. Casanova,Gregory Barnes,Ayman El‐Baz
出处
期刊:Medical Physics [Wiley]
卷期号:48 (5): 2315-2326 被引量:30
标识
DOI:10.1002/mp.14692
摘要

Purpose Task‐based fMRI (TfMRI) is a diagnostic imaging modality for observing the effects of a disease or other condition on the functional activity of the brain. Autism spectrum disorder (ASD) is a pervasive developmental disorder associated with impairments in social and linguistic abilities. Machine learning algorithms have been widely utilized for brain imaging aiming for objective ASD diagnostics. Recently, deep learning methods have been gaining more attention for fMRI classification. The goal of this paper is to develop a convolutional neural network (CNN)‐based framework to help in global diagnosis of ASD using TfMRI data that are collected from a response to speech experiment. Methods To achieve this goal, the proposed framework adopts a novel imaging marker integrating both spatial and temporal information that are related to the functional activity of the brain. The developed pipeline consists of three main components. In the first step, the collected TfMRI data are preprocessed and parcellated using the Harvard–Oxford probabilistic atlas included with the fMRIB Software Library (FSL). Second, a group analysis using FSL is performed between ASD and typically developing (TD) children to identify significantly activated brain areas in response to the speech task. In order to reduce brain spatial dimensionality, a K‐means clustering technique is performed on such significant brain areas. Informative blood oxygen level‐dependent (BOLD) signals are extracted from each cluster. A compression step for each extracted BOLD signal using discrete wavelet transform (DWT) has been proposed. The adopted wavelets are similar to the expected hemodynamic response which enables DWT to compress the BOLD signal while highlighting its activation information. Finally, a deep learning 2D CNN network is used to classify the patients as ASD or TD based on extracted features from the previous step. Results Preliminary results on 100 TfMRI dataset (50 ASD, 50 TD) obtain 80% correct global classification using tenfold cross validation (with sensitivity = 84%, specificity = 76%). Conclusion The experimental results show the high accuracy of the proposed framework and hold promise for the presented framework as a helpful adjunct to currently used ASD diagnostic tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助野生菜狗采纳,获得10
1秒前
kdjm688完成签到,获得积分10
4秒前
英俊的铭应助天佑小涛采纳,获得10
4秒前
5秒前
medxyy完成签到,获得积分10
8秒前
不配.应助yellow采纳,获得20
8秒前
9秒前
胥浩楠发布了新的文献求助10
9秒前
哈哈完成签到 ,获得积分10
10秒前
Zoey626完成签到 ,获得积分10
12秒前
可爱的小桃完成签到,获得积分10
17秒前
语安完成签到 ,获得积分10
17秒前
yellow完成签到 ,获得积分10
19秒前
仔仔完成签到 ,获得积分10
20秒前
24秒前
Zhao发布了新的文献求助10
27秒前
Oliver完成签到 ,获得积分10
27秒前
28秒前
30秒前
31秒前
野生菜狗发布了新的文献求助10
33秒前
34秒前
光能使者完成签到,获得积分10
34秒前
nickchenzzz发布了新的文献求助10
35秒前
天佑小涛完成签到,获得积分10
35秒前
情怀应助袁建波采纳,获得10
35秒前
天佑小涛发布了新的文献求助10
38秒前
Bingtao_Lian完成签到 ,获得积分10
40秒前
CaoJing完成签到 ,获得积分10
43秒前
zr完成签到,获得积分10
44秒前
Hello应助熊熊采纳,获得10
44秒前
凯文完成签到 ,获得积分10
46秒前
ozy发布了新的文献求助10
49秒前
卢健辉完成签到,获得积分10
49秒前
Hhhh完成签到 ,获得积分10
52秒前
zr发布了新的文献求助10
54秒前
nickchenzzz完成签到,获得积分10
54秒前
我是老大应助chenshen采纳,获得10
54秒前
王一生完成签到,获得积分10
58秒前
木木杨完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801716
关于积分的说明 7845638
捐赠科研通 2459139
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727