A robust DWT–CNN‐based CAD system for early diagnosis of autism using task‐based fMRI

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 小波 机器学习 语音识别
作者
Reem Haweel,Ahmed Shalaby,Ali Mahmoud,Noha A. Seada,Said Ghoniemy,Mohammed Ghazal,Manuel F. Casanova,Gregory Barnes,Ayman El‐Baz
出处
期刊:Medical Physics [Wiley]
卷期号:48 (5): 2315-2326 被引量:31
标识
DOI:10.1002/mp.14692
摘要

Purpose Task‐based fMRI (TfMRI) is a diagnostic imaging modality for observing the effects of a disease or other condition on the functional activity of the brain. Autism spectrum disorder (ASD) is a pervasive developmental disorder associated with impairments in social and linguistic abilities. Machine learning algorithms have been widely utilized for brain imaging aiming for objective ASD diagnostics. Recently, deep learning methods have been gaining more attention for fMRI classification. The goal of this paper is to develop a convolutional neural network (CNN)‐based framework to help in global diagnosis of ASD using TfMRI data that are collected from a response to speech experiment. Methods To achieve this goal, the proposed framework adopts a novel imaging marker integrating both spatial and temporal information that are related to the functional activity of the brain. The developed pipeline consists of three main components. In the first step, the collected TfMRI data are preprocessed and parcellated using the Harvard–Oxford probabilistic atlas included with the fMRIB Software Library (FSL). Second, a group analysis using FSL is performed between ASD and typically developing (TD) children to identify significantly activated brain areas in response to the speech task. In order to reduce brain spatial dimensionality, a K‐means clustering technique is performed on such significant brain areas. Informative blood oxygen level‐dependent (BOLD) signals are extracted from each cluster. A compression step for each extracted BOLD signal using discrete wavelet transform (DWT) has been proposed. The adopted wavelets are similar to the expected hemodynamic response which enables DWT to compress the BOLD signal while highlighting its activation information. Finally, a deep learning 2D CNN network is used to classify the patients as ASD or TD based on extracted features from the previous step. Results Preliminary results on 100 TfMRI dataset (50 ASD, 50 TD) obtain 80% correct global classification using tenfold cross validation (with sensitivity = 84%, specificity = 76%). Conclusion The experimental results show the high accuracy of the proposed framework and hold promise for the presented framework as a helpful adjunct to currently used ASD diagnostic tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
李哈哈发布了新的文献求助10
刚刚
沉静的电脑完成签到,获得积分10
刚刚
希望天下0贩的0应助123131采纳,获得10
刚刚
晚晚完成签到,获得积分20
1秒前
1秒前
赘婿应助宇宙边缘打怪兽采纳,获得30
1秒前
SciGPT应助快乐的羊驼采纳,获得10
1秒前
1秒前
代纤绮完成签到,获得积分10
1秒前
1秒前
852应助semigreen采纳,获得10
2秒前
3秒前
LiMing发布了新的文献求助10
3秒前
晴朗完成签到,获得积分10
3秒前
顺利的琳完成签到,获得积分0
3秒前
eternity136发布了新的文献求助10
4秒前
yy发布了新的文献求助10
5秒前
5秒前
6秒前
腼腆的冷玉完成签到,获得积分10
6秒前
Lucas应助123采纳,获得10
7秒前
111完成签到,获得积分10
7秒前
个性的紫菜应助Double桐采纳,获得20
7秒前
希望天下0贩的0应助yi采纳,获得10
7秒前
物外完成签到,获得积分10
8秒前
东京蔡徐坤完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
king_creole完成签到,获得积分10
10秒前
VV完成签到,获得积分10
10秒前
10秒前
11秒前
面包小狗发布了新的文献求助10
11秒前
必发SCI完成签到,获得积分10
11秒前
zct完成签到,获得积分20
11秒前
12秒前
LILIN发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437