已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detecting health misinformation in online health communities: Incorporating behavioral features into machine learning based approaches

误传 计算机科学 健康传播 人工智能 心理学 沟通 计算机安全
作者
Yuehua Zhao,Jingwei Da,Jiaqi Yan
出处
期刊:Information Processing and Management [Elsevier]
卷期号:58 (1): 102390-102390 被引量:164
标识
DOI:10.1016/j.ipm.2020.102390
摘要

Curbing the diffusion of health misinformation on social media has long been a public concern since the spread of such misinformation can have adverse effects on public health. Previous studies mainly relied on linguistic features and textual features to detect online health-related misinformation. Based on the Elaboration Likelihood Model (ELM), this study proposed that the features of online health misinformation can be classified into two levels: central-level and peripheral-level. In this study, a novel health misinformation detection model was proposed which incorporated the central-level features (including topic features) and the peripheral-level features (including linguistic features, sentiment features, and user behavioral features). In addition, the following behavioral features were introduced to reflect the interaction characteristics of users: Discussion initiation, Interaction engagement, Influential scope, Relational mediation, and Informational independence. Due to the lack of a labeled dataset, we collected the dataset from a real online health community in order to provide a real scenario for data analysis. Four types of misinformation were identified through the coding analysis. The proposed model and its individual features were validated on the real-world dataset. The model correctly detected about 85% of the health misinformation. The results also suggested that behavioral features were more informative than linguistic features in detecting misinformation. The findings not only demonstrated the efficacy of behavioral features in health misinformation detection but also offered both methodological and theoretical contributions to misinformation detection from the perspective of integrating the features of messages as well as the features of message creators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
hhh完成签到 ,获得积分10
1秒前
2秒前
2秒前
852应助Jemma采纳,获得10
3秒前
4秒前
alexhua发布了新的文献求助10
5秒前
5秒前
6秒前
8秒前
鱼羊明完成签到 ,获得积分10
8秒前
泥嚎发布了新的文献求助10
9秒前
11秒前
闪闪香菱发布了新的文献求助10
11秒前
11秒前
FashionBoy应助宋玮采纳,获得10
12秒前
15秒前
kevinqpp发布了新的文献求助10
17秒前
kejiyn完成签到,获得积分10
20秒前
20秒前
动听紫文完成签到,获得积分10
21秒前
我是熊大完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
相龙完成签到,获得积分10
22秒前
xiaolei001应助zgz采纳,获得10
23秒前
梨花诗发布了新的文献求助10
23秒前
宋玮完成签到,获得积分10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
18635986106应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
18635986106应助科研通管家采纳,获得10
23秒前
初光应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
24秒前
温暖伟祺完成签到,获得积分10
24秒前
魔梓菌完成签到 ,获得积分10
25秒前
mmmio发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493371
求助须知:如何正确求助?哪些是违规求助? 4591376
关于积分的说明 14433721
捐赠科研通 4523887
什么是DOI,文献DOI怎么找? 2478514
邀请新用户注册赠送积分活动 1463494
关于科研通互助平台的介绍 1436308