Detecting health misinformation in online health communities: Incorporating behavioral features into machine learning based approaches

误传 计算机科学 健康传播 人工智能 心理学 沟通 计算机安全
作者
Yuehua Zhao,Jingwei Da,Jiaqi Yan
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:58 (1): 102390-102390 被引量:150
标识
DOI:10.1016/j.ipm.2020.102390
摘要

Curbing the diffusion of health misinformation on social media has long been a public concern since the spread of such misinformation can have adverse effects on public health. Previous studies mainly relied on linguistic features and textual features to detect online health-related misinformation. Based on the Elaboration Likelihood Model (ELM), this study proposed that the features of online health misinformation can be classified into two levels: central-level and peripheral-level. In this study, a novel health misinformation detection model was proposed which incorporated the central-level features (including topic features) and the peripheral-level features (including linguistic features, sentiment features, and user behavioral features). In addition, the following behavioral features were introduced to reflect the interaction characteristics of users: Discussion initiation, Interaction engagement, Influential scope, Relational mediation, and Informational independence. Due to the lack of a labeled dataset, we collected the dataset from a real online health community in order to provide a real scenario for data analysis. Four types of misinformation were identified through the coding analysis. The proposed model and its individual features were validated on the real-world dataset. The model correctly detected about 85% of the health misinformation. The results also suggested that behavioral features were more informative than linguistic features in detecting misinformation. The findings not only demonstrated the efficacy of behavioral features in health misinformation detection but also offered both methodological and theoretical contributions to misinformation detection from the perspective of integrating the features of messages as well as the features of message creators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧气青年发布了新的文献求助10
1秒前
第一张完成签到,获得积分10
1秒前
1秒前
科研顺利完成签到,获得积分10
2秒前
lilin完成签到,获得积分10
2秒前
我想@科研发布了新的文献求助10
3秒前
zyyz应助hhh采纳,获得10
3秒前
4秒前
刘唐荣发布了新的文献求助10
4秒前
4秒前
5秒前
小竹子完成签到 ,获得积分10
5秒前
石石石完成签到,获得积分10
6秒前
隐形曼青应助我想@科研采纳,获得10
6秒前
7秒前
雨晴完成签到,获得积分10
7秒前
Poison_521发布了新的文献求助10
7秒前
北落发布了新的文献求助10
8秒前
赘婿应助整齐百褶裙采纳,获得10
9秒前
9秒前
DijiaXu应助火星上雨珍采纳,获得10
9秒前
Cici发布了新的文献求助10
10秒前
jj发布了新的文献求助10
10秒前
lei关注了科研通微信公众号
11秒前
火火发布了新的文献求助10
12秒前
12秒前
hhh发布了新的文献求助10
12秒前
13秒前
于鱼完成签到,获得积分10
13秒前
13秒前
yiyi037118发布了新的文献求助10
14秒前
杜客发布了新的文献求助10
14秒前
14秒前
卡卡西应助rtx00采纳,获得10
14秒前
14秒前
自觉大门完成签到,获得积分10
15秒前
沧笙踏歌应助Lin采纳,获得10
15秒前
15秒前
XoXo完成签到,获得积分10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970157
求助须知:如何正确求助?哪些是违规求助? 3514887
关于积分的说明 11176340
捐赠科研通 3250158
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875668
科研通“疑难数据库(出版商)”最低求助积分说明 805004