Molecular Dynamics Characteristics and Model of Vehicle-Following Behavior

加速度 巡航控制 车辆动力学 过程(计算) 计算机科学 模拟 角加速度 控制理论(社会学) 汽车工程 工程类 控制(管理) 物理 人工智能 经典力学 操作系统
作者
Yanfeng Jia,Dayi Qu,Xiaolong Ma,Lin Lu,Jiale Hong
出处
期刊:Journal of Advanced Transportation [Hindawi Publishing Corporation]
卷期号:2020: 1-11
标识
DOI:10.1155/2020/8867805
摘要

The vehicle-following behavior is a self-organizing behavior that restores dynamic balance under the stimulation of external environmental factors. In fact, there are asymmetric problems in the process of acceleration and deceleration of drivers. The existing traditional models ignored the differences between acceleration and deceleration of vehicles. In order to solve this problem, the vehicles driving on the road are compared to interacting molecules. Vehicle-following characteristics are studied, and the molecular following model is established based on molecular dynamics. The model parameters under different conditions are calibrated considering the required safety distance by the vehicle and the reaction time of the driver. With the help of the vehicle running track graphs, speed, and acceleration graphs, the numerical simulations of the molecular following model and the classical optimal speed vehicle-following model are carried out. The results of the comparative analysis show that the acceleration in the process of acceleration and deceleration is not constant but more sensitive to the deceleration of the preceding vehicle than to the acceleration and more sensitive to the acceleration/deceleration of the short-distance vehicle than to the acceleration/deceleration of the long-distance vehicle. Therefore, the molecular following model can better describe the vehicle-following behavior, and the research results can provide a theoretical basis and a technical reference for the analysis of traffic flow dynamic characteristics and adaptive cruise control technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默的泥猴桃完成签到,获得积分10
刚刚
蕉鲁诺蕉巴纳完成签到,获得积分0
刚刚
weiwei完成签到 ,获得积分10
2秒前
tonight完成签到 ,获得积分10
3秒前
001完成签到,获得积分10
3秒前
3秒前
十八完成签到 ,获得积分10
4秒前
Huimin完成签到,获得积分10
7秒前
CuteG完成签到 ,获得积分10
7秒前
7秒前
10秒前
丸子完成签到 ,获得积分10
12秒前
Accept完成签到,获得积分10
12秒前
匆匆完成签到,获得积分10
13秒前
墨瞳完成签到,获得积分10
13秒前
Keyuuu30完成签到,获得积分0
14秒前
甜甜醉波完成签到,获得积分10
15秒前
poplar完成签到,获得积分10
16秒前
CodeCraft应助欧锡萍采纳,获得10
16秒前
lvlei发布了新的文献求助10
16秒前
研友_892kOL完成签到,获得积分10
16秒前
yaocx完成签到,获得积分10
16秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
16秒前
18秒前
今年我必胖20斤完成签到,获得积分10
19秒前
秋婷完成签到 ,获得积分10
19秒前
Tonald Yang完成签到,获得积分20
20秒前
22秒前
22秒前
24秒前
酷酷小子完成签到 ,获得积分10
24秒前
茉莉是个饱饱完成签到,获得积分10
25秒前
陈无敌完成签到 ,获得积分10
25秒前
横A完成签到 ,获得积分10
27秒前
33秒前
布知道完成签到 ,获得积分10
34秒前
Kaimori完成签到,获得积分10
34秒前
36秒前
苏素完成签到,获得积分10
37秒前
辛勤的刺猬完成签到 ,获得积分10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729213
求助须知:如何正确求助?哪些是违规求助? 3274358
关于积分的说明 9985078
捐赠科研通 2989562
什么是DOI,文献DOI怎么找? 1640619
邀请新用户注册赠送积分活动 779260
科研通“疑难数据库(出版商)”最低求助积分说明 748145