Molecular Dynamics Characteristics and Model of Vehicle-Following Behavior

加速度 巡航控制 车辆动力学 过程(计算) 计算机科学 模拟 角加速度 控制理论(社会学) 汽车工程 工程类 控制(管理) 物理 人工智能 经典力学 操作系统
作者
Yanfeng Jia,Dayi Qu,Xiaolong Ma,Lin Lu,Jiale Hong
出处
期刊:Journal of Advanced Transportation [Hindawi Publishing Corporation]
卷期号:2020: 1-11
标识
DOI:10.1155/2020/8867805
摘要

The vehicle-following behavior is a self-organizing behavior that restores dynamic balance under the stimulation of external environmental factors. In fact, there are asymmetric problems in the process of acceleration and deceleration of drivers. The existing traditional models ignored the differences between acceleration and deceleration of vehicles. In order to solve this problem, the vehicles driving on the road are compared to interacting molecules. Vehicle-following characteristics are studied, and the molecular following model is established based on molecular dynamics. The model parameters under different conditions are calibrated considering the required safety distance by the vehicle and the reaction time of the driver. With the help of the vehicle running track graphs, speed, and acceleration graphs, the numerical simulations of the molecular following model and the classical optimal speed vehicle-following model are carried out. The results of the comparative analysis show that the acceleration in the process of acceleration and deceleration is not constant but more sensitive to the deceleration of the preceding vehicle than to the acceleration and more sensitive to the acceleration/deceleration of the short-distance vehicle than to the acceleration/deceleration of the long-distance vehicle. Therefore, the molecular following model can better describe the vehicle-following behavior, and the research results can provide a theoretical basis and a technical reference for the analysis of traffic flow dynamic characteristics and adaptive cruise control technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
第七个星球完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
桐桐应助季世坤采纳,获得10
2秒前
浮游应助yy采纳,获得10
2秒前
3秒前
LL关闭了LL文献求助
3秒前
科研通AI5应助冷静无心采纳,获得10
4秒前
xiaojinyu完成签到 ,获得积分10
4秒前
4秒前
5秒前
jinyu完成签到,获得积分10
5秒前
豆子发布了新的文献求助10
6秒前
6秒前
i7发布了新的文献求助10
6秒前
frank发布了新的文献求助10
6秒前
开放念云完成签到,获得积分20
7秒前
7秒前
复成发布了新的文献求助10
7秒前
7秒前
wangchaofk完成签到,获得积分10
7秒前
zhangzy发布了新的文献求助10
7秒前
Green发布了新的文献求助10
8秒前
Gamen完成签到,获得积分20
8秒前
guli完成签到,获得积分10
8秒前
8秒前
vothuong完成签到,获得积分10
8秒前
My发布了新的文献求助10
9秒前
定西完成签到,获得积分10
9秒前
9秒前
xuyang完成签到,获得积分10
9秒前
9秒前
Rufina0720发布了新的文献求助10
9秒前
ava完成签到,获得积分10
10秒前
朴素的向雁完成签到,获得积分10
10秒前
10秒前
大模型应助鱼鱼子999采纳,获得10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262