Spatial interpolation of surface ozone observations using deep learning

插值(计算机图形学) 深度学习 多元插值 地质统计学 环境科学 卷积神经网络 克里金 计算机科学 人工智能 空间变异性 算法 统计 数学 机器学习 双线性插值 运动(物理)
作者
Maosi Chen,Zhibin Sun,John M. Davis,Chaoshun Liu,Wei Gao
标识
DOI:10.1117/12.2320755
摘要

Surface ozone can trigger many health problems for human (e.g. coughing, bronchitis, emphysema, and asthma), especially for children and the elderly. It also has harmful effects on plants (e.g. chlorosis, necrosis, and yield reduction). The United State (U.S.) Environmental Protection Agency (EPA) has been monitoring surface ozone concentrations across the U.S. since 1980s. However, their stations are sparsely distributed and mainly in urban areas. Evaluation of surface ozone effects at any given locations in the U.S. requires spatial interpolation of ozone observations. In this study, we implemented two traditional spatial interpolation methods (i.e. triangulation-based linear interpolation and geostatistics-based method). One limitation of these two methods is their reliance on single-scene observations in constructing the spatial relationship, which is prone to influence of noisy observations and has large uncertainty. Deep learning, on the other hand, is capable of simulating common patterns (including complex spatial patterns) from a large amount of training samples. Therefore, we also implemented three deep learning algorithms for the spatial interpolation problem: mixture model network (MoNet), Convolutional Neural Network for Graphs (ChebNet), and Recurrent Neural Network (RNN). The training and validation data of this study are the 2016 EPA hourly surface ozone observations within ±3-degree box centered at the Billings, Oklahoma station (USDA UV-B Monitoring and Research Program). The results showed that among the five methods, RNN and MoNet outperformed the two traditional spatial interpolation methods and RNN has the lowest validation error (mean absolute error: 2.82 ppb; standard deviation: 2.76 ppb). Finally, we used the integrated gradients method to analyze the attribution of RNN inputs on the surface ozone prediction. The results showed that surface ozone observation is the most important input feature followed by distance and absolute locations (i.e. elevations, longitudes, and latitudes).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
明明完成签到,获得积分10
2秒前
求知的周完成签到,获得积分10
2秒前
3秒前
柒柒球完成签到,获得积分10
3秒前
赵田完成签到 ,获得积分10
4秒前
4秒前
长安完成签到,获得积分10
8秒前
大橙子发布了新的文献求助10
9秒前
在水一方应助Herisland采纳,获得10
11秒前
笨笨小刺猬完成签到,获得积分10
13秒前
13秒前
科研小达人完成签到,获得积分10
16秒前
追寻凌青完成签到,获得积分10
18秒前
渡劫完成签到,获得积分10
19秒前
丫丫完成签到 ,获得积分10
19秒前
lxy发布了新的文献求助10
20秒前
bono完成签到 ,获得积分10
23秒前
DentistRui完成签到,获得积分10
23秒前
25秒前
laber应助忧伤的步美采纳,获得50
28秒前
淡淡月饼发布了新的文献求助20
29秒前
茶茶应助虞无声采纳,获得50
29秒前
大橙子发布了新的文献求助10
31秒前
wangnn完成签到,获得积分10
32秒前
xzz完成签到,获得积分10
34秒前
阿绿发布了新的文献求助10
38秒前
39秒前
量子星尘发布了新的文献求助10
39秒前
manman完成签到 ,获得积分20
42秒前
太清完成签到,获得积分10
46秒前
山雀完成签到,获得积分10
48秒前
伊一完成签到,获得积分10
50秒前
哭泣笑柳发布了新的文献求助10
56秒前
琳琅发布了新的文献求助10
1分钟前
xue完成签到 ,获得积分10
1分钟前
liars完成签到 ,获得积分10
1分钟前
搞怪人雄完成签到,获得积分10
1分钟前
落后的夜阑完成签到,获得积分10
1分钟前
大橙子发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022