Spatial interpolation of surface ozone observations using deep learning

插值(计算机图形学) 深度学习 多元插值 地质统计学 环境科学 卷积神经网络 克里金 计算机科学 人工智能 空间变异性 算法 统计 数学 机器学习 双线性插值 运动(物理)
作者
Maosi Chen,Zhibin Sun,John M. Davis,Chaoshun Liu,Wei Gao
标识
DOI:10.1117/12.2320755
摘要

Surface ozone can trigger many health problems for human (e.g. coughing, bronchitis, emphysema, and asthma), especially for children and the elderly. It also has harmful effects on plants (e.g. chlorosis, necrosis, and yield reduction). The United State (U.S.) Environmental Protection Agency (EPA) has been monitoring surface ozone concentrations across the U.S. since 1980s. However, their stations are sparsely distributed and mainly in urban areas. Evaluation of surface ozone effects at any given locations in the U.S. requires spatial interpolation of ozone observations. In this study, we implemented two traditional spatial interpolation methods (i.e. triangulation-based linear interpolation and geostatistics-based method). One limitation of these two methods is their reliance on single-scene observations in constructing the spatial relationship, which is prone to influence of noisy observations and has large uncertainty. Deep learning, on the other hand, is capable of simulating common patterns (including complex spatial patterns) from a large amount of training samples. Therefore, we also implemented three deep learning algorithms for the spatial interpolation problem: mixture model network (MoNet), Convolutional Neural Network for Graphs (ChebNet), and Recurrent Neural Network (RNN). The training and validation data of this study are the 2016 EPA hourly surface ozone observations within ±3-degree box centered at the Billings, Oklahoma station (USDA UV-B Monitoring and Research Program). The results showed that among the five methods, RNN and MoNet outperformed the two traditional spatial interpolation methods and RNN has the lowest validation error (mean absolute error: 2.82 ppb; standard deviation: 2.76 ppb). Finally, we used the integrated gradients method to analyze the attribution of RNN inputs on the surface ozone prediction. The results showed that surface ozone observation is the most important input feature followed by distance and absolute locations (i.e. elevations, longitudes, and latitudes).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gjm完成签到,获得积分10
刚刚
旅行者完成签到,获得积分10
1秒前
2秒前
dspan发布了新的文献求助10
2秒前
sci_zt发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
张才豪完成签到,获得积分10
3秒前
111完成签到,获得积分10
3秒前
4秒前
夕颜如玉发布了新的文献求助10
4秒前
赵小熊完成签到,获得积分10
4秒前
4秒前
李佳萌完成签到,获得积分10
4秒前
难过的傲南关注了科研通微信公众号
5秒前
虚幻龙猫完成签到,获得积分10
5秒前
5秒前
李晓萌完成签到 ,获得积分10
5秒前
俊逸易烟发布了新的文献求助10
5秒前
奶茶菌发布了新的文献求助10
5秒前
6秒前
6秒前
刘小雨发布了新的文献求助10
7秒前
山黛Liebe发布了新的文献求助10
7秒前
李健的小迷弟应助krystal采纳,获得20
7秒前
8秒前
naitangkeke发布了新的文献求助10
8秒前
9秒前
yiyi发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
疯狂的胡萝卜应助蔚欢采纳,获得10
12秒前
义气凝阳发布了新的文献求助10
12秒前
12秒前
sln发布了新的文献求助10
12秒前
qianqianaaa发布了新的文献求助10
13秒前
追寻冬萱完成签到,获得积分10
13秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974712
求助须知:如何正确求助?哪些是违规求助? 3519159
关于积分的说明 11197254
捐赠科研通 3255257
什么是DOI,文献DOI怎么找? 1797724
邀请新用户注册赠送积分活动 877130
科研通“疑难数据库(出版商)”最低求助积分说明 806132