清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spatial interpolation of surface ozone observations using deep learning

插值(计算机图形学) 深度学习 多元插值 地质统计学 环境科学 卷积神经网络 克里金 计算机科学 人工智能 空间变异性 算法 统计 数学 机器学习 双线性插值 运动(物理)
作者
Maosi Chen,Zhibin Sun,John M. Davis,Chaoshun Liu,Wei Gao
标识
DOI:10.1117/12.2320755
摘要

Surface ozone can trigger many health problems for human (e.g. coughing, bronchitis, emphysema, and asthma), especially for children and the elderly. It also has harmful effects on plants (e.g. chlorosis, necrosis, and yield reduction). The United State (U.S.) Environmental Protection Agency (EPA) has been monitoring surface ozone concentrations across the U.S. since 1980s. However, their stations are sparsely distributed and mainly in urban areas. Evaluation of surface ozone effects at any given locations in the U.S. requires spatial interpolation of ozone observations. In this study, we implemented two traditional spatial interpolation methods (i.e. triangulation-based linear interpolation and geostatistics-based method). One limitation of these two methods is their reliance on single-scene observations in constructing the spatial relationship, which is prone to influence of noisy observations and has large uncertainty. Deep learning, on the other hand, is capable of simulating common patterns (including complex spatial patterns) from a large amount of training samples. Therefore, we also implemented three deep learning algorithms for the spatial interpolation problem: mixture model network (MoNet), Convolutional Neural Network for Graphs (ChebNet), and Recurrent Neural Network (RNN). The training and validation data of this study are the 2016 EPA hourly surface ozone observations within ±3-degree box centered at the Billings, Oklahoma station (USDA UV-B Monitoring and Research Program). The results showed that among the five methods, RNN and MoNet outperformed the two traditional spatial interpolation methods and RNN has the lowest validation error (mean absolute error: 2.82 ppb; standard deviation: 2.76 ppb). Finally, we used the integrated gradients method to analyze the attribution of RNN inputs on the surface ozone prediction. The results showed that surface ozone observation is the most important input feature followed by distance and absolute locations (i.e. elevations, longitudes, and latitudes).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
沐浠完成签到 ,获得积分10
37秒前
葛力完成签到,获得积分20
41秒前
科研通AI2S应助葛力采纳,获得10
53秒前
54秒前
宇文非笑完成签到 ,获得积分0
1分钟前
科研通AI5应助laodai8855采纳,获得20
1分钟前
1分钟前
乾坤侠客LW完成签到,获得积分10
2分钟前
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
科研通AI2S应助葛力采纳,获得10
2分钟前
lxh完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
laodai8855发布了新的文献求助20
3分钟前
3分钟前
3分钟前
科研通AI5应助梨子茶采纳,获得30
3分钟前
3分钟前
bju发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
bju完成签到,获得积分10
4分钟前
4分钟前
梨子茶发布了新的文献求助30
4分钟前
mczhu完成签到,获得积分10
4分钟前
聪慧芷巧完成签到 ,获得积分10
5分钟前
qqJing完成签到,获得积分10
5分钟前
deallyxyz应助草木采纳,获得10
5分钟前
5分钟前
5分钟前
常有李完成签到,获得积分10
5分钟前
5分钟前
默默孱完成签到 ,获得积分10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513318
关于积分的说明 11167279
捐赠科研通 3248691
什么是DOI,文献DOI怎么找? 1794414
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804652