已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatial interpolation of surface ozone observations using deep learning

插值(计算机图形学) 深度学习 多元插值 地质统计学 环境科学 卷积神经网络 克里金 计算机科学 人工智能 空间变异性 算法 统计 数学 机器学习 双线性插值 运动(物理)
作者
Maosi Chen,Zhibin Sun,John M. Davis,Chaoshun Liu,Wei Gao
标识
DOI:10.1117/12.2320755
摘要

Surface ozone can trigger many health problems for human (e.g. coughing, bronchitis, emphysema, and asthma), especially for children and the elderly. It also has harmful effects on plants (e.g. chlorosis, necrosis, and yield reduction). The United State (U.S.) Environmental Protection Agency (EPA) has been monitoring surface ozone concentrations across the U.S. since 1980s. However, their stations are sparsely distributed and mainly in urban areas. Evaluation of surface ozone effects at any given locations in the U.S. requires spatial interpolation of ozone observations. In this study, we implemented two traditional spatial interpolation methods (i.e. triangulation-based linear interpolation and geostatistics-based method). One limitation of these two methods is their reliance on single-scene observations in constructing the spatial relationship, which is prone to influence of noisy observations and has large uncertainty. Deep learning, on the other hand, is capable of simulating common patterns (including complex spatial patterns) from a large amount of training samples. Therefore, we also implemented three deep learning algorithms for the spatial interpolation problem: mixture model network (MoNet), Convolutional Neural Network for Graphs (ChebNet), and Recurrent Neural Network (RNN). The training and validation data of this study are the 2016 EPA hourly surface ozone observations within ±3-degree box centered at the Billings, Oklahoma station (USDA UV-B Monitoring and Research Program). The results showed that among the five methods, RNN and MoNet outperformed the two traditional spatial interpolation methods and RNN has the lowest validation error (mean absolute error: 2.82 ppb; standard deviation: 2.76 ppb). Finally, we used the integrated gradients method to analyze the attribution of RNN inputs on the surface ozone prediction. The results showed that surface ozone observation is the most important input feature followed by distance and absolute locations (i.e. elevations, longitudes, and latitudes).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cream完成签到,获得积分10
2秒前
3秒前
吾系渣渣辉完成签到 ,获得积分10
6秒前
6秒前
属实有点拉胯完成签到 ,获得积分10
6秒前
聂青枫完成签到,获得积分10
7秒前
8秒前
8秒前
Hello应助ink采纳,获得30
8秒前
呼延半邪完成签到 ,获得积分10
8秒前
深情安青应助群群采纳,获得10
9秒前
紧张的皮皮虾完成签到,获得积分20
9秒前
无聊的慕凝完成签到,获得积分10
10秒前
高屋建瓴完成签到,获得积分10
11秒前
无情听南完成签到,获得积分10
12秒前
13秒前
123发布了新的文献求助10
14秒前
张嘉雯完成签到 ,获得积分10
15秒前
刘丰铭完成签到,获得积分10
15秒前
卑微学术人完成签到 ,获得积分10
16秒前
wwwyyy完成签到 ,获得积分10
16秒前
Zeno完成签到 ,获得积分10
17秒前
劉浏琉完成签到,获得积分10
17秒前
18秒前
123完成签到,获得积分10
23秒前
sweet雪儿妞妞完成签到 ,获得积分10
25秒前
zy完成签到 ,获得积分10
26秒前
haha发布了新的文献求助10
27秒前
昆工完成签到 ,获得积分10
29秒前
顺利科研毕业完成签到,获得积分10
29秒前
胡杨柳完成签到,获得积分10
31秒前
zhaoxi完成签到 ,获得积分10
33秒前
33秒前
monster完成签到 ,获得积分10
34秒前
35秒前
隐形曼青应助筱如采纳,获得10
38秒前
张张发布了新的文献求助30
39秒前
稳重的白筠完成签到 ,获得积分10
39秒前
ink发布了新的文献求助30
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614